On the scaling of air layer drag reduction

2013 ◽  
Vol 717 ◽  
pp. 484-513 ◽  
Author(s):  
Brian R. Elbing ◽  
Simo Mäkiharju ◽  
Andrew Wiggins ◽  
Marc Perlin ◽  
David R. Dowling ◽  
...  

AbstractAir-induced drag reduction was investigated on a 12.9 m long flat plate test model at a free stream speed of $6. 3~\mathrm{m} ~{\mathrm{s} }^{- 1} $. Measurements of the local skin friction, phase velocity profiles (liquid and gas) and void fraction profiles were acquired at downstream distances to 11.5 m, which yielded downstream-distance-based Reynolds numbers above 80 million. Air was injected within the boundary layer behind a 13 mm backward facing step (BFS) while the incoming boundary layer was perturbed with vortex generators in various configurations immediately upstream of the BFS. Measurements confirmed that air layer drag reduction (ALDR) is sensitive to upstream disturbances, but a clean boundary layer separation line (i.e. the BFS) reduces such sensitivity. Empirical scaling of the experimental data was investigated for: (a) the critical air flux required to establish ALDR; (b) void fraction profiles; and (c) the interfacial velocity profiles. A scaling of the critical air flux for ALDR was developed from balancing shear-induced lift forces and buoyancy forces on a single bubble within a shear flow. The resulting scaling successfully collapses ALDR results from the current and past studies over a range of flow conditions and test model configurations. The interfacial velocity and void fraction profiles were acquired and scaled within the bubble drag reduction (BDR), ALDR and transitional ALDR regimes. The BDR interfacial velocity profile revealed that there was slip between phases. The ALDR results showed that the air layer thickness was nominally three-quarters of the total volumetric flux (per unit span) of air injected divided by the free stream speed. Furthermore, the air layer had an average void fraction of 0.75 and a velocity of approximately 0.2 times the free stream speed. Beyond the air layer was a bubbly mixture that scaled in a similar fashion to the BDR results. Transitional ALDR results indicate that this regime was comprised of intermittent generation and subsequent fragmentation of an air layer, with the resulting drag reduction determined by the fraction of time that an air layer was present.

2016 ◽  
Vol 805 ◽  
pp. 303-321 ◽  
Author(s):  
A. Stroh ◽  
Y. Hasegawa ◽  
P. Schlatter ◽  
B. Frohnapfel

A numerical investigation of two locally applied drag-reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case, whereas drag increase is found for the turbulence damping case. In order to account for this difference, the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a plate of finite length. Furthermore, it is shown that the far-downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. Based on this result, a simple model is developed that allows the local drag reduction rate to be related to the global one without the need to conduct expensive simulations or measurements far downstream of the control region.


2018 ◽  
Vol 850 ◽  
pp. 1117-1141 ◽  
Author(s):  
J. Saavedra ◽  
G. Paniagua ◽  
S. Lavagnoli

The behavioural characteristics of thermal boundary layer inception dictate the efficiency of heat exchangers and the operational limits of fluid machinery. The specific time required by the thermal boundary layer to be established is vital to optimize flow control strategies, as well as the thermal management of systems exposed to ephemeral phenomena, typically on the millisecond scale. This paper presents the time characterization of the momentum and thermal boundary layer development in transient turbulent compressible air flows. We present a new framework to perform such estimations based on detailed unsteady Reynolds averaged Navier–Stokes simulations that may be extended to higher fidelity simulations. First of all, the aerodynamic boundary layer initiation is described using adiabatic simulations. Additional numerical calculations were then performed by setting the isothermal wall condition to evaluate the additional time required by the thermal boundary layer to establish after the aerodynamic boundary layer reaches its steady state. Finally, full conjugate simulations were executed to compute the warm up effect of the solid during the blowdown of a hot fluid over a colder metallic test model. The transient performance of the turbulent thermal and momentum boundary layers is quantified through numerical simulations of air blowdown over a flat plate for different mainstream flow conditions. The effects of Reynolds number, free stream velocity, transient duration, test article length and free stream temperature were independently assessed, to then define a mathematical expression of the momentum boundary layer settlement. This paper presents a novel numerical correlation of the additional time required by the thermal boundary layer to be stablished after the settlement of the momentum boundary layer. The time scales of the aerodynamic and thermal boundary layers are presented as a function of relevant non-dimensional numbers, as well as the description of the response of the near wall flow to sudden free stream changes. The characterization of the boundary layer mechanisms discussed in this paper contribute to the establishment of an evidence-based foundation for advances in the field of flow control.


2011 ◽  
Vol 681 ◽  
pp. 154-172 ◽  
Author(s):  
YUKINORI KAMETANI ◽  
KOJI FUKAGATA

Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto & Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.


1968 ◽  
Vol 34 (3) ◽  
pp. 575-593 ◽  
Author(s):  
Graham Wilks

The work that follows considers the velocity profiles within the boundary layer at the wall of an arbitrarily converging funnel. The occurrence of super-velocities, i.e. components of velocity within the boundary layer exceeding their corresponding free stream component, is investigated and the relevance of such a phenomenon to the efficiency of discharge discussed.


2008 ◽  
Vol 612 ◽  
pp. 201-236 ◽  
Author(s):  
BRIAN R. ELBING ◽  
ERIC S. WINKEL ◽  
KEARY A. LAY ◽  
STEVEN L. CECCIO ◽  
DAVID R. DOWLING ◽  
...  

To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0ms−1. Near-wall bulk void fraction was measured at twelve streamwise locations with impedance probes, and near-wall (0 < Y < 5mm) bubble populations were estimated with a bubble imaging system. The instrument suite was used to investigate the scaling of BDR and the requirements necessary to achieve ALDR.Results from the BDR experiments indicate that: significant drag reduction (>25%) is limited to the first few metres downstream of injection; marginal improvement was possible with a porous-plate versus an open-slot injector design; BDR has negligible sensitivity to surface tension; bubble size is independent of surface tension downstream of injection; BDR is insensitive to boundary-layer thickness at the injection location; and no synergetic effect is observed with compound injection. Using these data, previous BDR scaling methods are investigated, but data collapse is observed only with the ‘initial zone’ scaling, which provides little information on downstream persistence of BDR.ALDR was investigated with a series of experiments that included a slow increase in the volumetric flux of air injected at free-stream speeds to 15.3ms−1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms−1; the critical volumetric flux of air required to achieve ALDR was observed to be approximately proportional to the square of the free-stream speed; slightly higher injection rates were required for ALDR if the surface tension was decreased; stable air layers were formed at free-stream speeds to 12.5ms−1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.


1953 ◽  
Vol 4 (2) ◽  
pp. 123-150 ◽  
Author(s):  
G. E. Gadd

SummaryAn analysis has been made which suggests that, with the types of pressure distribution most usual in practice and free stream Mach numbers up to 10, no serious errors would be introduced into the calculation of the laminar separation point by the assumption that σ, the Prandtl number, and ω, the index of variation of viscosity with absolute temperature, are equal to unity. (Typical actual values of σ and ω for air are 0.72 and 0.89 respectively).


Sign in / Sign up

Export Citation Format

Share Document