Direct numerical simulation of turbulent channel flow with spanwise rotation

2015 ◽  
Vol 788 ◽  
pp. 42-56 ◽  
Author(s):  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Shiyi Chen

A series of direct numerical simulations of turbulent channel flow with spanwise rotation at fixed global friction Reynolds number is performed to investigate the rotation effects on the mean velocity, streamwise velocity fluctuations, Reynolds shear stress and turbulent kinetic energy. The global friction Reynolds number is chosen to be $Re_{{\it\tau}}=u_{{\it\tau}}^{\ast }h^{\ast }/{\it\nu}^{\ast }=180$ ($u_{{\it\tau}}^{\ast }$ is the global friction velocity, $h^{\ast }$ is the channel half-width and ${\it\nu}^{\ast }$ is the kinematic viscosity), while the global-friction-velocity-based rotation number $Ro_{{\it\tau}}=2{\it\Omega}^{\ast }h^{\ast }/u_{{\it\tau}}^{\ast }$ (${\it\Omega}^{\ast }$ is the dimensional angular velocity) varies from 0 to 130. In the previously reported $2{\it\Omega}^{\ast }$-slope region for the mean velocity, a linear behaviour for the streamwise velocity fluctuations, a unit-slope linear profile for the Reynolds shear stress and a $-2Ro_{{\it\tau}}$-slope linear profile for the production term of $\langle u^{\prime }u^{\prime }\rangle$ have been identified for the first time. The critical rotation number, which corresponds to the laminar limit, is predicted to be equal to $Re_{{\it\tau}}$ according to the unit-slope linear profile of the Reynolds shear stress. Our results also show that a parabolic profile of the mean velocity can be identified around the ‘second plateau’ region of the Reynolds shear stress for $Ro_{{\it\tau}}\geqslant 22$. The parabolas at different rotation numbers have the same shape of $1/Re_{{\it\tau}}$, the radius of curvature at the vertex. Furthermore, the system rotation increases the volume-averaged turbulent kinetic energy at lower rotation rates, and then decreases it when $Ro_{{\it\tau}}\gtrsim 16$.

2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


Author(s):  
Takuma Katayama ◽  
Shinsuke Mochizuki

The present experiment focuses on the vorticity diffusion in a stronger wall jet managed by a three-dimensional flat plate wing in the outer layer. Measurement of the fluctuating velocities and vorticity correlation has been carried out with 4-wire vorticity probe. The turbulent vorticity diffusion due to the large scale eddies in the outer layer is quantitatively examined by using the 4-wire vorticity probe. Quantitative relationship between vortex structure and Reynolds shear stress is revealed by means of directly measured experimental evidence which explains vorticity diffusion process and influence of the manipulating wing. It is expected that the three-dimensional outer layer manipulator contributes to keep convex profile of the mean velocity, namely, suppression of the turbulent diffusion and entrainment.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


Author(s):  
N. Ahmad ◽  
R. N. Parthasarathy

Particle Image Velocimetry (PIV) measurements were made in a fully-developed turbulent channel flow. The channel test section was 1 ft wide and 1 inch in height and was constructed out of plexiglass. One wall of the test section was made removable. Four walls were used: a plexiglass smooth wall, and three hydrophobic walls: (i) a lotus paint coated plexiglass wall, (ii) a treated aluminum sheet attached to the plexiglass wall and (iii) a treated rough surface attached to the plexiglass wall. The bulk velocity was held constant to yield a Reynolds number (based on the channel half-height) of 5,500. Several images were averaged to obtain mean velocity and Reynolds shear stress and turbulence kinetic energy measurements. It was found that the mean velocities in the near-wall region were higher for the lotus-paint coated surface flow and the treated rough surface flow than the flows with the other two surfaces. The friction velocity estimated from the Reynolds shear stress measurements was significantly lower for these two flows as well. The reduction in the wall shear stress in these flows is attributed to the finite slip that occurs at the hydrophobic surfaces.


Author(s):  
Hugo D. Pasinato ◽  
Ezequiel Arthur Krumrick

Abstract This research uses data from direct numerical simulation (DNS) to characterize the different errors associated with a Reynolds-averaged Navier-Stokes (RANS) simulation. The statistics from DNS (Reynolds stresses, kinetic energy of turbulence, $\kappa$, and dissipation of turbulence, $\epsilon$), are fed into a RANS simulation with the same Reynolds number, geometry, and numerical code used for DNS. Three integral metrics error based on the mean velocity, the moduli of the mean rate-of-strain tensor, and the wall shear stress are used to characterize the errors associated with the RANS technique, with the RANS model, and with the linear eddy viscosity model (LEVM). For developed and perturbed flow, it is found that the mean velocity of the RANS simulations with the DNS statistics is almost the same as the mean velocity from DNS data. This procedure enables the study of the relative importance of the different Reynolds stresses in a particular flow. It is shown that for the bounded perturbed turbulent flows studied here, almost all the necessary effects of turbulence are contained in the Reynolds shear stress.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Lei Xu ◽  
Zvi Rusak ◽  
Luciano Castillo

A novel two-equations model for computing the flow properties of a spatially-developing, incompressible, zero-pressure-gradient, turbulent boundary layer over a smooth, flat wall is developed. The mean streamwise velocity component inside the boundary layer is described by the Reynolds-averaged Navier–Stokes equation where the Reynolds shear stress is given by an extended mixing-length model. The nondimensional form of the mixing length is described by a polynomial function in terms of the nondimensional wall normal coordinate. Moreover, a stream function approach is applied with a leading-order term described by a similarity function. Two ordinary differential equations are derived for the solution of the similarity function along the wall normal coordinate and for its streamwise location. A numerical integration scheme of the model equations is developed and enables the solution of flow properties. The coefficients of the mixing-length polynomial function are modified at each streamwise location as part of solution iterations to satisfy the wall and far-field boundary conditions and adjust the local boundary layer thickness, δ99.4, to a location where streamwise speed is 99.4% of the far-field streamwise velocity. The elegance of the present approach is established through the successful solution of the various flow properties across the boundary layer (i.e., mean streamwise velocity, viscous stress, Reynolds shear stress, skin friction coefficient, and growth rate of boundary layer among others) from the laminar regime all the way to the fully turbulent regime. It is found that results agree with much available experimental data and direct numerical simulations for a wide range of Reθ based on the momentum thickness (Reθ) from 15 up to 106, except for the transition region from laminar to turbulent flow. Furthermore, results shed light on the von Kármán constant as a function of Reθ, the possible four-layer nature of the mean streamwise velocity profile, the universal profiles of the streamwise velocity and the Reynolds shear stress at high Reθ, and the scaling laws at the outer region.


1974 ◽  
Vol 64 (4) ◽  
pp. 763-774 ◽  
Author(s):  
R. G. Deissler

The early and intermediate development of a highly accelerated (or decelerated) turbulent boundary layer is analysed. For sufficiently large accelerations (or pressure gradients) and for total normal strains which are not excessive, the equation for the Reynolds shear stress simplifies to give a stress that remains approximately constant as it is convected along streamlines. The theoretical results for the evolution of the mean velocity in favourable and adverse pressure gradients agree well with experiment for the cases considered. A calculation which includes mass injection at the wall is also given.


1973 ◽  
Vol 95 (3) ◽  
pp. 467-473 ◽  
Author(s):  
D. Dura˜o ◽  
J. H. Whitelaw

Measurements of mean velocity, the three normal stresses and Reynolds shear stress are reported in the developing region of coaxial jet flows. The measurements were obtained with three velocity ratios, i.e., values of the ratio of maximum initial pipe velocity to maximum initial annulus velocity of 0, 0.23, and 0.62 and at downstream distances up to 17 outer diameters. The results show that coaxial jets tend to reach a self-preserving state much more rapidly than axisymmetric single jets; that the mean velocity, normal stresses, and Reynolds shear stress attain this state at a similar downstream location; and that, for the particular geometry investigated, a velocity ratio of around 0.15 corresponds to the slowest rate of development. Relationships between mean velocity gradient, Reynolds shear stress, and turbulent kinetic energy are examined to assess their ability to characterize the present flow: the results indicate the need to take account of the normal stresses in any proposed mathematical model.


1976 ◽  
Vol 77 (2) ◽  
pp. 369-396 ◽  
Author(s):  
Q. A. Ahmad ◽  
R. E. Luxton ◽  
R. A. Antonia

Measurements are presented of both mean and fluctuating velocity components in a turbulent boundary layer subjected to a nearly homogeneous external turbulent shear flow. The Reynolds shear stress in the external shear flow is small compared with the wall shear stress. Its transverse mean velocity gradient λ (≃ 6 s−l) is also small compared with typical gradients based on outer variables (say Uw/δ, where Uwis the value of the linear velocity profile extrapolated to the wall and δ is the boundary-layer thickness), but is of the same order as Ut/δ (Ur is the friction velocity). The influence of both positive and negative transverse velocity gradients on the turbulent wall layer is investigated over a streamwise region where the normal Reynolds stresses in the external flow are approximately equal and constant in the streamwise direction. In this region, the integral length scale of the external flow is of the same order of magnitude as that of the wall layer. Measurements in the boundary layer are also given for an un-sheared external turbulent flow (λ = 0) with a turbulence level Tu of 1.5%, approximately the same as that for h = ± 6 s−1. (Tu, is defined as the ratio of the r.m.s. longitudinal velocity fluctuation to Uw.) The measurements are in good agreement with those available in the literature for a similar free-stream turbulence level and show that the external turbulence level and length scale exert a large influence on the turbulence structure in the boundary layer. The additional effect of the external shear on the mean velocity and turbulent energy budget distributions in the inner region of the boundary layer is found to be small. In the outer region, the ‘wake’ component of the mean velocity defect is lowered by the presence of free-stream turbulence and one extra effect due to the external shear is an increase in the Reynolds shear stress when h is positive and a decrease when h is negative. Another interesting effect due to the shear is the appearance near the edge of the layer of a small but distinct region where the local mean velocity is constant and the Reynolds shear stress is negligible.


2017 ◽  
Vol 828 ◽  
pp. 424-458 ◽  
Author(s):  
Geert Brethouwer

A study of fully developed plane turbulent channel flow subject to spanwise system rotation through direct numerical simulations is presented. In order to study both the influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds number $Re=U_{b}h/\unicode[STIX]{x1D708}$ is varied from a low 3000 to a moderate 31 600 and the rotation number $Ro=2\unicode[STIX]{x1D6FA}h/U_{b}$ is varied from 0 to 2.7, where $U_{b}$ is the mean bulk velocity, $h$ the channel half-gap, $\unicode[STIX]{x1D708}$ the viscosity and $\unicode[STIX]{x1D6FA}$ the system rotation rate. The mean streamwise velocity profile displays also at higher $Re$ a characteristic linear part with a slope near to $2\unicode[STIX]{x1D6FA}$, and a corresponding linear part in the profiles of the production and dissipation rate of turbulent kinetic energy appears. With increasing $Ro$, a distinct unstable side with large spanwise and wall-normal Reynolds stresses and a stable side with much weaker turbulence develops in the channel. The flow starts to relaminarize on the stable side of the channel and persisting turbulent–laminar patterns appear at higher $Re$. If $Ro$ is further increased, the flow on the stable side becomes laminar-like while at yet higher $Ro$ the whole flow relaminarizes, although the calm periods might be disrupted by repeating bursts of turbulence, as explained by Brethouwer (Phys. Rev. Fluids, vol. 1, 2016, 054404). The influence of the Reynolds number is considerable, in particular on the stable side of the channel where velocity fluctuations are stronger and the flow relaminarizes less quickly at higher $Re$. Visualizations and statistics show that, at $Ro=0.15$ and 0.45, large-scale structures and large counter-rotating streamwise roll cells develop on the unstable side. These become less noticeable and eventually vanish when $Ro$ rises, especially at higher $Re$. At high $Ro$, the largest energetic structures are larger at lower $Re$.


Sign in / Sign up

Export Citation Format

Share Document