Re-entrant corner flows of Oldroyd-B fluids

Author(s):  
J.D Evans

The method of matched asymptotic expansions is used to construct solutions for the planar steady flow of Oldroyd-B fluids around re-entrant corners of angles π / α (1/2≤ α <1). Two types of similarity solutions are described for the core flow away from the walls. These correspond to the two main dominant balances of the constitutive equation, where the upper convected derivative of stress either dominates or is balanced by the upper convected derivative of the rate of strain. The former balance gives the incompressible Euler or inviscid flow equations and the latter balance the incompressible Navier–Stokes equations. The inviscid flow similarity solution for the core is that first derived by Hinch (Hinch 1993 J. Non-Newtonian Fluid Mech. 50 , 161–171) with a core stress singularity that depends upon the corner angle and radial distance as O ( r −2(1− α ) ) and a velocity behaviour that vanishes as O ( r α (3− α )−1 ). Extending the analysis of Renardy (Renardy 1995 J. Non-Newtonian Fluid Mech. 58 , 83–39), this outer solution is matched to viscometric wall behaviour for both upstream and downstream boundary layers. This structure is shown to hold for the majority of the retardation parameter range. In contrast, the similarity solution associated with the Navier–Stokes equations has a velocity behaviour O ( r λ ) where λ ∈(0,1) satisfies a nonlinear eigenvalue problem, dependent upon the corner angle and an associated Reynolds number defined in terms of the ratio of the retardation and relaxation times. This similarity solution is shown to hold as an outer solution and is matched into stress boundary layers at the walls which recover viscometric behaviour. However, the matching is restricted to values of the retardation parameter close to the relaxation parameter. In this case the leading order core stress is Newtonian with behaviour O ( r −(1− λ ) ).

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


2017 ◽  
Vol 826 ◽  
pp. 396-420 ◽  
Author(s):  
M. Bouyges ◽  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.


2015 ◽  
Vol 771 ◽  
pp. 520-546 ◽  
Author(s):  
Nicola De Tullio ◽  
Anatoly I. Ruban

The capabilities of the triple-deck theory of receptivity for subsonic compressible boundary layers have been thoroughly investigated through comparisons with numerical simulations of the compressible Navier–Stokes equations. The analysis focused on the two Tollmien–Schlichting wave linear receptivity problems arising due to the interaction between a low-amplitude acoustic wave and a small isolated roughness element, and the low-amplitude time-periodic vibrations of a ribbon placed on the wall of a flat plate. A parametric study was carried out to look at the effects of roughness element and vibrating ribbon longitudinal dimensions, Reynolds number, Mach number and Tollmien–Schlichting wave frequency. The flat plate is considered isothermal, with a temperature equal to the laminar adiabatic-wall temperature. Numerical simulations of the full and the linearised compressible Navier–Stokes equations have been carried out using high-order finite differences to obtain, respectively, the steady basic flows and the unsteady disturbance fields for the different flow configurations analysed. The results show that the asymptotic theory and the Navier–Stokes simulations are in good agreement. The initial Tollmien–Schlichting wave amplitudes and, in particular, the trends indicated by the theory across the whole parameter space are in excellent agreement with the numerical results. An important finding of the present study is that the behaviour of the theoretical solutions obtained for $\mathit{Re}\rightarrow \infty$ holds at finite Reynolds numbers and the only conditions needed for the theoretical predictions to be accurate are that the receptivity process be linear and the free-stream Mach number be subsonic.


1985 ◽  
Vol 154 ◽  
pp. 357-375 ◽  
Author(s):  
J. A. C. Humphrey ◽  
H. Iacovides ◽  
B. E. Launder

The paper reports numerical solutions to a semi-elliptic truncation of the Navier–Stokes equations for the case of developing laminar flow in circular-sectioned bends over a range of Dean numbers. The ratios of bend radius to pipe radius are 7:1 and 20:1, corresponding with the configurations examined experimentally by Talbot and his co-workers in recent years. The semi-elliptic treatment facilitates a much finer grid than has been possible in earlier studies. Numerical accuracy has been further improved by assuming radial equilibrium over a thin sublayer immediately adjacent to the wall and by re-formulating the boundary conditions at the pipe centre.Streamwise velocity profiles at Dean numbers of 183 and 565 are in excellent agreement with laser-Doppler measurements by Agrawal, Talbot & Gong (1978). Good, albeit less complete, accord is found with the secondary velocities, though the differences that exist may be mainly due to the difficulty of making these measurements. The paper provides new information on the behaviour of the streamwise shear stress around the inner line of symmetry. Upstream of the point of minimum shear stress, our numerical predictions display a progressive shift towards the result of Stewartson, Cebici & Chang (1980) as the Dean number is successively raised. Downstream of the minimum, however, in contrast with the monotonic approach to an asymptotic level reported by Stewartson, the numerical solutions display a damped oscillatory behaviour reminiscent of those from Hawthorne's (1951) inviscid-flow calculations. The amplitude of the oscillation grows as the Dean number is raised.


1992 ◽  
Vol 238 ◽  
pp. 487-507 ◽  
Author(s):  
Ernst W. Mayer ◽  
Kenneth G. Powell

Results are presented for a class of self-similar solutions of the steady, axisymmetric Navier–Stokes equations, representing the flows in slender (quasi-cylindrical) vortices. Effects of vortex strength, axial gradients and compressibility are studied. The presence of viscosity is shown to couple the parameters describing the core growth rate and the external flow field, and numerical solutions show that the presence of an axial pressure gradient has a strong effect on the axial flow in the core. For the viscous compressible vortex, near-zero densities and pressures and low temperatures are seen on the vortex axis as the strength of the vortex increases. Compressibility is also shown to have a significant influence upon the distribution of vorticity in the vortex core.


1997 ◽  
Vol 339 ◽  
pp. 199-211 ◽  
Author(s):  
R. S. HEEG ◽  
N. RILEY

In this paper we present the results from numerical calculations, based upon the Navier–Stokes equations at relatively high Reynolds number, of the formation of a vortex ring when fluid is ejected from a circular tube. Our results are compared with the experiments of Didden (1979), and the inviscid flow calculations of Nitsche & Krasny (1994). Reasonable agreement is achieved except for the rate of shedding of circulation during the initial stages of ring formation. The theoretically predicted rate of shedding is substantially higher than that predicted by Didden. By contrast the inviscid theory predicts an anomalously high rate of initial shedding. We offer explanations for both of these apparent discrepancies.


1995 ◽  
Vol 303 ◽  
pp. 215-232 ◽  
Author(s):  
H. M. Badr ◽  
S. C. R. Dennis ◽  
S. Kocabiyik ◽  
P. Nguyen

The transient flow field caused by an infinitely long circular cylinder placed in an unbounded viscous fluid oscillating in a direction normal to the cylinder axis, which is at rest, is considered. The flow is assumed to be started suddenly from rest and to remain symmetrical about the direction of motion. The method of solution is based on an accurate procedure for integrating the unsteady Navier–Stokes equations numerically. The numerical method has been carried out for large values of time for both moderate and high Reynolds numbers. The effects of the Reynolds number and of the Strouhal number on the laminar symmetric wake evolution are studied and compared with previous numerical and experimental results. The time variation of the drag coefficients is also presented and compared with an inviscid flow solution for the same problem. The comparison between viscous and inviscid flow results shows a better agreement for higher values of Reynolds and a Strouhal numbers. The mean flow for large times is calculated and is found to be in good agreement with previous predictions based on boundary-layer theory.


Sign in / Sign up

Export Citation Format

Share Document