Turbulence collapse in a suction boundary layer

2016 ◽  
Vol 795 ◽  
pp. 356-379 ◽  
Author(s):  
T. Khapko ◽  
P. Schlatter ◽  
Y. Duguet ◽  
D. S. Henningson

Turbulence in the asymptotic suction boundary layer is investigated numerically at the verge of laminarisation using direct numerical simulation. Following an adiabatic protocol, the Reynolds number $Re$ is decreased in small steps starting from a fully turbulent state until laminarisation is observed. Computations in a large numerical domain allow in principle for the possible coexistence of laminar and turbulent regions. However, contrary to other subcritical shear flows, no laminar–turbulent coexistence is observed, even near the onset of sustained turbulence. High-resolution computations suggest a critical Reynolds number $Re_{g}\approx 270$, below which turbulence collapses, based on observation times of $O(10^{5})$ inertial time units. During the laminarisation process, the turbulent flow fragments into a series of transient streamwise-elongated structures, whose interfaces do not display the characteristic obliqueness of classical laminar–turbulent patterns. The law of the wall, i.e. logarithmic scaling of the velocity profile, is retained down to $Re_{g}$, suggesting a large-scale wall-normal transport absent in internal shear flows close to the onset. In order to test the effect of these large-scale structures on the near-wall region, an artificial volume force is added to damp spanwise and wall-normal fluctuations above $y^{+}=100$, in viscous units. Once the largest eddies have been suppressed by the forcing, and thus turbulence is confined to the near-wall region, oblique laminar–turbulent interfaces do emerge as in other wall-bounded flows, however only transiently. These results suggest that oblique stripes at the onset are a prevalent feature of internal shear flows, but will not occur in canonical boundary layers, including the spatially growing ones.

2012 ◽  
Vol 225 ◽  
pp. 109-117 ◽  
Author(s):  
Zambri Harun ◽  
Mohamad Dali Isa ◽  
Mohammad Rasidi Rasani ◽  
Shahrir Abdullah

Single normal hot-wire measurements of the streamwise component of velocity were taken in boundary layer flows subjected to pressure gradients at matched friction Reynolds numbers Reτ ≈ 3000. To evaluate spatial resolution effects, the sensor lengths are varied in both adverse pressure gradient (APG) and favorable pressure gradient (FPG). A control boundary layer flow in zero pressure gradient ZPG is also presented. It is shown here that, when the sensor length is maintained a constant value, in a contant Reynolds number, the near-wall peak increases with (adverse) pressure gradient. Both increased contributions of the small- and especially large-scale features are attributed to the increased broadband turbulence intensities. The two-mode increase, one centreing in the near-wall region and the other one in the outer region, makes spatial resolution studies in boundary layer flow more complicated. The increased large-scale features in the near-wall region of an APG flow is similar to large-scales increase due to Reynolds number in ZPG flow. Additionally, there is also an increase of the small-scales in the near-wall region when the boundary layer is exposed to adverse pressure gradient (while the Reynolds number is constant). In order to collapse the near-wall peaks for APG, ZPG and FPG flows, the APG flow has to use the longest sensor and conversely, the FPG has to use the shortest sensor. This study recommends that the empirical prediction by Huthins et. al. (2009) to be reevaluated if pressure gradient flows were to be considered such that the magnitude of the near-wall peak is also a function of the adverse pressure gradient parameter.


2011 ◽  
Vol 666 ◽  
pp. 573-604 ◽  
Author(s):  
M. GUALA ◽  
M. METZGER ◽  
B. J. McKEON

Simultaneous streamwise velocity measurements across the vertical direction obtained in the atmospheric surface layer (Reτ ≃ 5 × 105) under near thermally neutral conditions are used to outline and quantify interactions between the scales of turbulence, from the very-large-scale motions to the dissipative scales. Results from conditioned spectra, joint probability density functions and conditional averages show that the signature of very-large-scale oscillations can be found across the whole wall region and that these scales interact with the near-wall turbulence from the energy-containing eddies to the dissipative scales, most strongly in a layer close to the wall, z+ ≲ 103. The scale separation achievable in the atmospheric surface layer appears to be a key difference from the low-Reynolds-number picture, in which structures attached to the wall are known to extend through the full wall-normal extent of the boundary layer. A phenomenological picture of very-large-scale motions coexisting and interacting with structures from the hairpin paradigm is provided here for the high-Reynolds-number case. In particular, it is inferred that the hairpin-packet conceptual model may not be exhaustively representative of the whole wall region, but only of a near-wall layer of z+ = O(103), where scale interactions are mostly confined.


2017 ◽  
Vol 829 ◽  
pp. 751-779 ◽  
Author(s):  
Jinyul Hwang ◽  
Hyung Jin Sung

Direct numerical simulation data of a turbulent boundary layer ($Re_{\unicode[STIX]{x1D70F}}=1000$) were used to investigate the large-scale influences on the vortical structures that contribute to the local skin friction. The amplitudes of the streamwise and wall-normal swirling strengths ($\unicode[STIX]{x1D706}_{x}$and$\unicode[STIX]{x1D706}_{y}$) were conditionally sampled by measuring the large-scale streamwise velocity fluctuations ($u_{l}$). In the near-wall region, the amplitudes of$\unicode[STIX]{x1D706}_{x}$and$\unicode[STIX]{x1D706}_{y}$decreased under negative$u_{l}$rather than under positive$u_{l}$. This behaviour arose from the spanwise motions within the footprints of the large-scale low-speed ($u_{l}<0$) and high-speed structures ($u_{l}>0$). The intense spanwise motions under the footprint of positive$u_{l}$noticeably strengthened the small-scale spanwise velocity fluctuations ($w_{s}$) below the centre of the near-wall vortical structures as compared to$w_{s}$within the footprint of negative$u_{l}$. The streamwise and wall-normal components were attenuated or amplified around the modulated vortical motions, which in turn led to the dependence of the swirling strength on the$u_{l}$event. We quantified the contribution of the modulated vortical motions$\langle -w\unicode[STIX]{x1D714}_{y}\rangle$, which were related to a change-of-scale effect due to the vortex-stretching force, to the local skin friction. In the near-wall region, intense values of$\langle -w\unicode[STIX]{x1D714}_{y}\rangle$were observed for positive$u_{l}$. By contrast, these values were low for negative$u_{l}$, in connection with the amplification of$w_{s}$and$\unicode[STIX]{x1D706}_{y}$by the strong spanwise motions of the positive$u_{l}$. The resultant skin friction induced by the amplified vortical motions within$u_{l}^{+}>2$was responsible for 15 % of the total skin friction generated by the change-of-scale effect. Finally, we applied this analysis to a drag-reduced flow and found that the amplified vortical motions within the footprint of positive$u_{l}$were markedly diminished, which ultimately contributed to the total drag reduction.


2019 ◽  
Vol 864 ◽  
pp. 708-745 ◽  
Author(s):  
Kenzo Sasaki ◽  
Ricardo Vinuesa ◽  
André V. G. Cavalieri ◽  
Philipp Schlatter ◽  
Dan S. Henningson

Three methods are evaluated to estimate the streamwise velocity fluctuations of a zero-pressure-gradient turbulent boundary layer of momentum-thickness-based Reynolds number up to $Re_{\unicode[STIX]{x1D703}}\simeq 8200$, using as input velocity fluctuations at different wall-normal positions. A system identification approach is considered where large-eddy simulation data are used to build single and multiple-input linear and nonlinear transfer functions. Such transfer functions are then treated as convolution kernels and may be used as models for the prediction of the fluctuations. Good agreement between predicted and reference data is observed when the streamwise velocity in the near-wall region is estimated from fluctuations in the outer region. Both the unsteady behaviour of the fluctuations and the spectral content of the data are properly predicted. It is shown that approximately 45 % of the energy in the near-wall peak is linearly correlated with the outer-layer structures, for the reference case $Re_{\unicode[STIX]{x1D703}}=4430$. These identified transfer functions allow insight into the causality between the different wall-normal locations in a turbulent boundary layer along with an estimation of the tilting angle of the large-scale structures. Differences in accuracy of the methods (single- and multiple-input linear and nonlinear) are assessed by evaluating the coherence of the structures between wall-normally separated positions. It is shown that the large-scale fluctuations are coherent between the outer and inner layers, by means of an interactions which strengthens with increasing Reynolds number, whereas the finer-scale fluctuations are only coherent within the near-wall region. This enables the possibility of considering the wall-shear stress as an input measurement, which would more easily allow the implementation of these methods in experimental applications. A parametric study was also performed by evaluating the effect of the Reynolds number, wall-normal positions and input quantities considered in the model. Since the methods vary in terms of their complexity for implementation, computational expense and accuracy, the technique of choice will depend on the application under consideration. We also assessed the possibility of designing and testing the models at different Reynolds numbers, where it is shown that the prediction of the near-wall peak from wall-shear-stress measurements is practically unaffected even for a one order of magnitude change in the corresponding Reynolds number of the design and test, indicating that the interaction between the near-wall peak fluctuations and the wall is approximately Reynolds-number independent. Furthermore, given the performance of such methods in the prediction of flow features in turbulent boundary layers, they have a good potential for implementation in experiments and realistic flow control applications, where the prediction of the near-wall peak led to correlations above 0.80 when wall-shear stress was used in a multiple-input or nonlinear scheme. Errors of the order of 20 % were also observed in the determination of the near-wall spectral peak, depending on the employed method.


2012 ◽  
Vol 57 (4) ◽  
pp. 1-13 ◽  
Author(s):  
Gregory Jasion ◽  
John Shrimpton

Dust entrained by low flying helicopters leads to the degraded visual environment, brownout. Particle inception is a critical stage in the development of the dust cloud. Here, near-wall Lagrangian particle forces are considered through analyzing an approximate time-averaged full-scale rotor flow. This simplified flow does not attempt to predict brownout, instead it provides scales and velocity data in the near-wall region, compares the role of particle-fluid forces, and provides a foundation for Lagrangian entrainment models. The analysis shows that three characteristic particle sizes are exposed to different physics in different boundary layer zones, a function of the distance from the helicopter. Drag is the dominant aerodynamic force, cohesion is large for small particles, but wall-bounded lift is sufficient to entrain medium-sized particles. A complementary analytical prediction of tip vortices found that both large-scale inviscid features and small-scale viscous features of the boundary layer are significant.


2014 ◽  
Vol 751 ◽  
Author(s):  
V. Avsarkisov ◽  
S. Hoyas ◽  
M. Oberlack ◽  
J. P. García-Galache

AbstractA new set of numerical simulations of turbulent plane Couette flow in a large box of dimension ($\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}20\pi h,\, 2h,\, 6\pi h$) at Reynolds number $(\mathit{Re}_{\tau }) =125$, 180, 250 and 550 is described and compared with simulations at lower Reynolds numbers, Poiseuille flows and experiments. The simulations present a logarithmic near-wall layer and are used to verify and revise previously known results. It is confirmed that the fluctuation intensities in the streamwise and spanwise directions do not scale well in wall units. The scaling failure occurs both near to and away from the wall. On the contrary, the wall-normal intensity scales in inner units in the near-wall region and in outer units in the core region. The spectral ridge found by Hoyas & Jiménez (Phys. Fluids, vol. 18, 2003, 011702) for the turbulent Poiseuille flow can also be seen in the present flow. Away from the wall, very large-scale motions are found spanning through all the length of the channel. The statistics of these simulations can be downloaded from the webpage of the Chair of Fluid Dynamics.


2018 ◽  
Vol 860 ◽  
pp. 886-938 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

The transport equations for the variances of the velocity components are investigated using data from direct numerical simulations of incompressible channel flows at friction Reynolds number ($Re_{\unicode[STIX]{x1D70F}}$) up to$Re_{\unicode[STIX]{x1D70F}}=5200$. Each term in the transport equation has been spectrally decomposed to expose the contribution of turbulence at different length scales to the processes governing the flow of energy in the wall-normal direction, in scale and among components. The outer-layer turbulence is dominated by very large-scale streamwise elongated modes, which are consistent with the very large-scale motions (VLSM) that have been observed by many others. The presence of these VLSMs drives many of the characteristics of the turbulent energy flows. Away from the wall, production occurs primarily in these large-scale streamwise-elongated modes in the streamwise velocity, but dissipation occurs nearly isotropically in both velocity components and scale. For this to happen, the energy is transferred from the streamwise-elongated modes to modes with a range of orientations through nonlinear interactions, and then transferred to other velocity components. This allows energy to be transferred more-or-less isotropically from these large scales to the small scales at which dissipation occurs. The VLSMs also transfer energy to the wall region, resulting in a modulation of the autonomous near-wall dynamics and the observed Reynolds number dependence of the near-wall velocity variances. The near-wall energy flows are more complex, but are consistent with the well-known autonomous near-wall dynamics that gives rise to streaks and streamwise vortices. Through the overlap region between outer- and inner-layer turbulence, there is a self-similar structure to the energy flows. The VLSM production occurs at spanwise scales that grow with$y$. There is transport of energy away from the wall over a range of scales that grows with$y$. Moreover, there is transfer of energy to small dissipative scales which grows like$y^{1/4}$, as expected from Kolmogorov scaling. Finally, the small-scale near-wall processes characterised by wavelengths less than 1000 wall units are largely Reynolds number independent, while the larger-scale outer-layer processes are strongly Reynolds number dependent. The interaction between them appears to be relatively simple.


2009 ◽  
Vol 628 ◽  
pp. 311-337 ◽  
Author(s):  
ROMAIN MATHIS ◽  
NICHOLAS HUTCHINS ◽  
IVAN MARUSIC

In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow, 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692–701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ~ 103–104 to atmospheric surface layer measurements at Reτ ~ 106.


2018 ◽  
Vol 857 ◽  
pp. 704-747 ◽  
Author(s):  
Michael Heisel ◽  
Teja Dasari ◽  
Yun Liu ◽  
Jiarong Hong ◽  
Filippo Coletti ◽  
...  

Using super-large-scale particle image velocimetry (SLPIV), we investigate the spatial structure of the near-wall region in the fully rough atmospheric surface layer with Reynolds number$Re_{\unicode[STIX]{x1D70F}}\sim O(10^{6})$. The field site consists of relatively flat, snow-covered farmland, allowing for the development of a fully rough turbulent boundary layer under near-neutral thermal stability conditions. The imaging field of view extends from 3 m to 19 m above the ground and captures the top of the roughness sublayer and the bottom of an extensive logarithmic region. The SLPIV technique uses natural snowfall as seeding particles for the flow imaging. We demonstrate that SLPIV provides reliable measurements of first- and second-order velocity statistics in the streamwise and wall-normal directions. Our results in the logarithmic region show that the structural features identified in laboratory studies are similarly present in the atmosphere. Using instantaneous vector fields and two-point correlation analysis, we identify vortex structures sharing the signature of hairpin vortex packets. We also evaluate the zonal structure of the boundary layer by tracking uniform momentum zones (UMZs) and the shear interfaces between UMZs in space and time. Statistics of the UMZs and shear interfaces reveal the role of the zonal structure in determining the mean and variance profiles. The velocity difference across the shear interfaces scales with the friction velocity, in agreement with previous studies, and the size of the UMZs scales with wall-normal distance, in agreement with the attached eddy framework.


A model of the dynamic physical processes that occur in the near-wall region of a turbulent flow at high Reynolds numbers is described. The hairpin vortex is postulated to be the basic flow structure of the turbulent boundary layer. It is argued that the central features of the near-wall flow can be explained in terms of how asymmetric hairpin vortices interact with the background shear flow, with each other, and with the surface layer near the wall. The physical process that leads to the regeneration of new hairpin vortices near the surface is described, as well as the processes of evolution of such vortices to larger-scale motions farther from the surface. The model is supported by recent important developments in the theory of unsteady surface-layer separation and a number of ‘kernel' experiments which serve to elucidate the basic fluid mechanics phenomena believed to be relevant to the turbulent boundary layer. Explanations for the kinematical behaviour observed in direct numerical simulations of low Reynolds number boundary-layer and channel flows are given. An important aspect of the model is that it has been formulated to be consistent with accepted rational mechanics concepts that are known to provide a proper mathematical description of high Reynolds number flow.


Sign in / Sign up

Export Citation Format

Share Document