A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence

2016 ◽  
Vol 799 ◽  
pp. 352-382 ◽  
Author(s):  
D. Buaria ◽  
P. K. Yeung ◽  
B. L. Sawford

Statistics of the trajectories of molecules diffusing via Brownian motion in a turbulent flow are extracted from simulations of stationary isotropic turbulence, using a postprocessing approach applicable in both forward and backward reference frames. Detailed results are obtained for Schmidt numbers ($Sc$) from 0.001 to 1000 at Taylor-scale Reynolds numbers up to 1000. The statistics of displacements of single molecules compare well with the earlier theoretical work of Saffman (J. Fluid Mech. vol. 8, 1960, pp. 273–283) except for the scaling of the integral time scale of the fluid velocity following the molecular trajectories. For molecular pairs we extend Saffman’s theory to include pairs of small but finite initial separation, which is in excellent agreement with numerical results provided that data are collected at sufficiently small times. At intermediate times the separation statistics of molecular pairs exhibit a more robust Richardson scaling behaviour than for the fluid particles. The forward scaling constant is very close to 0.55, whereas the backward constant is approximately 1.53–1.57, with a weak Schmidt number dependence, although no scaling exists if $Sc\ll 1$ at the Reynolds numbers presently accessible. An important innovation in this work is to demonstrate explicitly the practical utility of a Lagrangian description of turbulent mixing, where molecular displacements and separations in the limit of small backward initial separation can be used to calculate the evolution of scalar fluctuations resulting from a known source function in space. Lagrangian calculations of the production and dissipation rates of the scalar fluctuations are shown to agree very well with Eulerian results for the case of passive scalars driven by a uniform mean gradient. Although the Eulerian–Lagrangian comparisons are made only for $Sc\sim O(1)$, the Lagrangian approach is more easily extended to both very low and very high Schmidt numbers. The well-known scalar dissipation anomaly is accordingly also addressed in a Lagrangian context.

2014 ◽  
Vol 744 ◽  
pp. 217-249 ◽  
Author(s):  
H. Herlina ◽  
J. G. Wissink

AbstractTo elucidate the physical mechanisms that play a role in the interfacial transfer of atmospheric gases into water, a series of direct numerical simulations of mass transfer across the air–water interface driven by isotropic turbulence diffusing from below has been carried out for various turbulent Reynolds numbers ($R_T=84,195,507$). To allow a direct (unbiased) comparison of the instantaneous effects of scalar diffusivity, in each of the DNS up to six scalar advection–diffusion equations with different Schmidt numbers were solved simultaneously. As far as the authors are aware this is the first simulation that is capable to accurately resolve the realistic Schmidt number, $\mathit{Sc}=500$, that is typical for the transport of atmospheric gases such as oxygen in water. For the range of turbulent Reynolds numbers and Schmidt numbers considered, the normalized transfer velocity $K_L$ was found to scale with $R_T^{-{1/2}}$ and $\mathit{Sc}^{-{1/2}}$, which indicates that the largest eddies present in the isotropic turbulent flow introduced at the bottom of the computational domain tend to determine the mass transfer. The $K_L$ results were also found to be in good agreement with the surface divergence model of McCready, Vassiliadou & Hanratty (AIChE J., vol. 32, 1986, pp. 1108–1115) when using a constant of proportionality of 0.525. Although close to the surface large eddies are responsible for the bulk of the gas transfer, it was also observed that for higher $R_T$ the influence of smaller eddies becomes more important.


2001 ◽  
Vol 433 ◽  
pp. 29-60 ◽  
Author(s):  
PRAKASH VEDULA ◽  
P. K. YEUNG ◽  
R. O. FOX

The physical mechanisms underlying the dynamics of the dissipation of passive scalar fluctuations with a uniform mean gradient in stationary isotropic turbulence are studied using data from direct numerical simulations (DNS), at grid resolutions up to 5123. The ensemble-averaged Taylor-scale Reynolds number is up to about 240 and the Schmidt number is from ⅛ to 1. Special attention is given to statistics conditioned upon the energy dissipation rate because of their important role in the Lagrangian spectral relaxation (LSR) model of turbulent mixing. In general, the dominant physical processes are those of nonlinear amplification by strain rate fluctuations, and destruction by molecular diffusivity. Scalar dissipation tends to form elongated structures in space, with only a limited overlap with zones of intense energy dissipation. Scalar gradient fluctuations are preferentially aligned with the direction of most compressive strain rate, especially in regions of high energy dissipation. Both the nature of this alignment and the timescale of the resulting scalar gradient amplification appear to be nearly universal in regard to Reynolds and Schmidt numbers. Most of the terms appearing in the budget equation for conditional scalar dissipation show neutral behaviour at low energy dissipation but increased magnitudes at high energy dissipation. Although homogeneity requires that transport terms have a zero unconditional average, conditional molecular transport is found to be significant, especially at lower Reynolds or Schmidt numbers within the simulation data range. The physical insights obtained from DNS are used for a priori testing and development of the LSR model. In particular, based on the DNS data, improved functional forms are introduced for several model coefficients which were previously taken as constants. Similar improvements including new closure schemes for specific terms are also achieved for the modelling of conditional scalar variance.


2005 ◽  
Vol 128 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Sébastien Fouques ◽  
Harald E. Krogstad ◽  
Dag Myrhaug

Synthetic aperture radar (SAR) imaging of ocean waves involves both the geometry and the kinematics of the sea surface. However, the traditional linear wave theory fails to describe steep waves, which are likely to bring about specular reflection of the radar beam, and it may overestimate the surface fluid velocity that causes the so-called velocity bunching effect. Recently, the interest for a Lagrangian description of ocean gravity waves has increased. Such an approach considers the motion of individual labeled fluid particles and the free surface elevation is derived from the surface particles positions. The first order regular solution to the Lagrangian equations of motion for an inviscid and incompressible fluid is the so-called Gerstner wave. It shows realistic features such as sharper crests and broader troughs as the wave steepness increases. This paper proposes a second order irregular solution to these equations. The general features of the first and second order waves are described, and some statistical properties of various surface parameters such as the orbital velocity, slope, and mean curvature are studied.


2006 ◽  
Vol 128 (4) ◽  
pp. 874-879 ◽  
Author(s):  
Roberto C. Aguirre ◽  
Jennifer C. Nathman ◽  
Haris C. Catrakis

Flow geometry effects are examined on the turbulent mixing efficiency quantified as the mixture fraction. Two different flow geometries are compared at similar Reynolds numbers, Schmidt numbers, and growth rates, with fully developed turbulence conditions. The two geometries are the round jet and the single-stream planar shear layer. At the flow conditions examined, the jet exhibits an ensemble-averaged mixing efficiency which is approximately double the value for the shear layer. This substantial difference is explained fluid mechanically in terms of the distinct large-scale entrainment and mixing-initiation environments and is therefore directly due to flow geometry effects.


2016 ◽  
Vol 799 ◽  
pp. 159-199 ◽  
Author(s):  
A. Briard ◽  
T. Gomez ◽  
C. Cambon

The present work aims at developing a spectral model for a passive scalar field and its associated scalar flux in homogeneous anisotropic turbulence. This is achieved using the paradigm of eddy-damped quasi-normal Markovian (EDQNM) closure extended to anisotropic flows. In order to assess the validity of this approach, the model is compared to several detailed direct numerical simulations (DNS) and experiments of shear-driven flows and isotropic turbulence with a mean scalar gradient at moderate Reynolds numbers. This anisotropic modelling is then used to investigate the passive scalar dynamics at very high Reynolds numbers. In the framework of homogeneous isotropic turbulence submitted to a mean scalar gradient, decay and growth exponents for the cospectrum and scalar energies are obtained analytically and assessed numerically thanks to EDQNM closure. With the additional presence of a mean shear, the scaling of the scalar flux and passive scalar spectra in the inertial range are investigated and confirm recent theoretical predictions. Finally, it is found that, in shear-driven flows, the small scales of the scalar second-order moments progressively return to isotropy when the Reynolds number increases.


2016 ◽  
Vol 788 ◽  
Author(s):  
Ehud Yariv ◽  
Itzchak Frankel

When subject to sufficiently strong electric fields, particles and drops suspended in a weakly conducting liquid exhibit spontaneous rotary motion. This so-called Quincke rotation is a fascinating example of nonlinear symmetry-breaking phenomena. To illuminate the rotation of liquid drops we here analyse the asymptotic limit of large electric Reynolds numbers, $\mathit{Re}\gg 1$, within the framework of a two-dimensional Taylor–Melcher electrohydrodynamic model. A non-trivial dominant balance in this singular limit results in both the fluid velocity and surface-charge density scaling as $\mathit{Re}^{-1/2}$. The flow is governed by a self-contained nonlinear boundary-value problem that does not admit a continuous fore–aft symmetric solution, thus necessitating drop rotation. Furthermore, thermodynamic arguments reveal that a fore–aft asymmetric solution exists only when charge relaxation within the suspending liquid is faster than that in the drop. The flow problem possesses both mirror-image (with respect to the direction of the external field) and flow-reversal symmetries; it is transformed into a universal one, independent of the ratios of electric conductivities and dielectric permittivities in the respective drop phase and suspending liquid phase. The rescaled angular velocity is found to depend weakly upon the viscosity ratio. The corresponding numerical solutions of the exact equations indeed collapse at large $\mathit{Re}$ upon the asymptotically calculated universal solution.


2018 ◽  
Vol 860 ◽  
pp. 465-486 ◽  
Author(s):  
Nimish Pujara ◽  
Greg A. Voth ◽  
Evan A. Variano

We examine the dynamics of slender, rigid rods in direct numerical simulation of isotropic turbulence. The focus is on the statistics of three quantities and how they vary as rod length increases from the dissipation range to the inertial range. These quantities are (i) the steady-state rod alignment with respect to the perceived velocity gradients in the surrounding flow, (ii) the rate of rod reorientation (tumbling) and (iii) the rate at which the rod end points move apart (stretching). Under the approximations of slender-body theory, the rod inertia is neglected and rods are modelled as passive particles in the flow that do not affect the fluid velocity field. We find that the average rod alignment changes qualitatively as rod length increases from the dissipation range to the inertial range. While rods in the dissipation range align most strongly with fluid vorticity, rods in the inertial range align most strongly with the most extensional eigenvector of the perceived strain-rate tensor. For rods in the inertial range, we find that the variance of rod stretching and the variance of rod tumbling both scale as $l^{-4/3}$, where $l$ is the rod length. However, when rod dynamics are compared to two-point fluid velocity statistics (structure functions), we see non-monotonic behaviour in the variance of rod tumbling due to the influence of small-scale fluid motions. Additionally, we find that the skewness of rod stretching does not show scale invariance in the inertial range, in contrast to the skewness of longitudinal fluid velocity increments as predicted by Kolmogorov’s $4/5$ law. Finally, we examine the power-law scaling exponents of higher-order moments of rod tumbling and rod stretching for rods with lengths in the inertial range and find that they show anomalous scaling. We compare these scaling exponents to predictions from Kolmogorov’s refined similarity hypotheses.


1981 ◽  
Vol 104 ◽  
pp. 419-443 ◽  
Author(s):  
J. Léorat ◽  
A. Pouquet ◽  
U. Frisch

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When L ≈ l0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


1962 ◽  
Vol 12 (1) ◽  
pp. 129-134 ◽  
Author(s):  
L. M. Hocking

An almost rigid rotation of a viscous fluid is produced by dividing the containing cylinder into two sections and rotating them at slightly different speeds. The fluid velocity can be separated into two parts, a swirl about the axis and a streaming motion in the axial planes. When the difference in the speeds of rotation of the two sections is small, the equations of motion can be linearized. The solution is found for large Reynolds numbers and provides an illustration of the way in which the conditions of geostrophic flow (no velocity variation in the axial direction and an inability to insist on undistrubed flow at infinity) are approached as the Reynolds number tends to infinity.


Sign in / Sign up

Export Citation Format

Share Document