Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study

2001 ◽  
Vol 433 ◽  
pp. 29-60 ◽  
Author(s):  
PRAKASH VEDULA ◽  
P. K. YEUNG ◽  
R. O. FOX

The physical mechanisms underlying the dynamics of the dissipation of passive scalar fluctuations with a uniform mean gradient in stationary isotropic turbulence are studied using data from direct numerical simulations (DNS), at grid resolutions up to 5123. The ensemble-averaged Taylor-scale Reynolds number is up to about 240 and the Schmidt number is from ⅛ to 1. Special attention is given to statistics conditioned upon the energy dissipation rate because of their important role in the Lagrangian spectral relaxation (LSR) model of turbulent mixing. In general, the dominant physical processes are those of nonlinear amplification by strain rate fluctuations, and destruction by molecular diffusivity. Scalar dissipation tends to form elongated structures in space, with only a limited overlap with zones of intense energy dissipation. Scalar gradient fluctuations are preferentially aligned with the direction of most compressive strain rate, especially in regions of high energy dissipation. Both the nature of this alignment and the timescale of the resulting scalar gradient amplification appear to be nearly universal in regard to Reynolds and Schmidt numbers. Most of the terms appearing in the budget equation for conditional scalar dissipation show neutral behaviour at low energy dissipation but increased magnitudes at high energy dissipation. Although homogeneity requires that transport terms have a zero unconditional average, conditional molecular transport is found to be significant, especially at lower Reynolds or Schmidt numbers within the simulation data range. The physical insights obtained from DNS are used for a priori testing and development of the LSR model. In particular, based on the DNS data, improved functional forms are introduced for several model coefficients which were previously taken as constants. Similar improvements including new closure schemes for specific terms are also achieved for the modelling of conditional scalar variance.

2009 ◽  
Vol 627 ◽  
pp. 1-32 ◽  
Author(s):  
HIROYUKI ABE ◽  
ROBERT ANTHONY ANTONIA ◽  
HIROSHI KAWAMURA

Direct numerical simulations of a turbulent channel flow with passive scalar transport are used to examine the relationship between small-scale velocity and scalar fields. The Reynolds number based on the friction velocity and the channel half-width is equal to 180, 395 and 640, and the molecular Prandtl number is 0.71. The focus is on the interrelationship between the components of the vorticity vector and those of the scalar derivative vector. Near the wall, there is close similarity between different components of the two vectors due to the almost perfect correspondence between the momentum and thermal streaks. With increasing distance from the wall, the magnitudes of the correlations become smaller but remain non-negligible everywhere in the channel owing to the presence of internal shear and scalar layers in the inner region and the backs of the large-scale motions in the outer region. The topology of the scalar dissipation rate, which is important for small-scale scalar mixing, is shown to be associated with the organized structures. The most preferential orientation of the scalar dissipation rate is the direction of the mean strain rate near the wall and that of the fluctuating compressive strain rate in the outer region. The latter region has many characteristics in common with several turbulent flows; viz. the dominant structures are sheetlike in form and better correlated with the energy dissipation rate than the enstrophy.


2010 ◽  
Vol 163-167 ◽  
pp. 398-405
Author(s):  
San Sheng Dong ◽  
Zi Xue Lei ◽  
Jun Hai Zhao

Based on the pseudo-static test of 6 high-strength RC columns with central reinforcement skeletons, this paper studied their hysterisis performance, degradation of strength and rigidity, and energy dissipation capacity, with the affecting factors analyzed. The result shows that the central reinforcement skeletons can compensate for the low plasticity and brittle failure susceptibility of high-strength concrete so that all the specimens have stable strength, slow rigidity degradation and high energy dissipation capacity at later stage of loading; the larger the core areas the higher the strengths and ductility of the specimens, but slightly faster the degradation of strength and energy dissipation capacity as compared with the specimens with smaller core areas; the spacing of ties, longitudinal reinforcement ratio of core area both influence the strength degradation and energy dissipation capacity of the specimens, but they have little effect on their strengths.


2005 ◽  
Vol 21 (4) ◽  
pp. 1093-1112 ◽  
Author(s):  
Thomas T. C. Hsu ◽  
Mohamad Y. Mansour

A new Cyclic Softened Membrane Model (CSMM) was recently developed to predict the stiffness, ductility, and energy dissipation of reinforced concrete (RC) elements subjected to reversed cyclic shear. Using the nonlinear finite element analysis, we can integrate these responses of elements to predict the behavior of a whole structure, such as a low-rise shear wall, subjected to earthquake action. This study of CSMM summarizes systematically the effects of the two primary variables: the steel bar angle with respect to the direction of the applied principal stresses and the steel percentage. The results clearly show that RC structures under cyclic shear stresses could be designed to be very ductile, have large stiffness, and possess high energy-dissipation capacities (just like flexural-dominated elements), if the steel bars are properly oriented in the directions of principal stresses and if the steel percentages are kept within certain limits.


2020 ◽  
Vol 10 (22) ◽  
pp. 8264
Author(s):  
Sang-Woo Kim ◽  
Kil-Hee Kim

This study proposes a relatively simple steel damper with high energy dissipation capacity. Three types of steel dampers were evaluated for structural performance. The first damper with U-shape had two vertical members and a semicircular connecting member for energy dissipation. The second damper with an angled U-shape replaced the connecting member with a horizontal steel member. The last damper with D-shape had a horizontal member added to the U-shaped damper. All the dampers were designed with steel plates on both sides that transmitted external shear force to the energy-dissipating members. To evaluate the structural performance of the dampers, an in-plane cyclic shear force was applied to the specimens. The D-shaped damper showed ductile behavior with excellent energy dissipation capacity after yielding without decreasing in strength during cyclic load. In other words, the D-shaped specimen showed excellent performance, with about 3.5 times the strength of the U-shaped specimen and about 3.8 times the energy dissipation capacity due to the additional horizontal member. Furthermore, the efficient energy dissipation of the proposed D-shaped steel damper was confirmed from the finite element (FE) analytical and experimental results.


2003 ◽  
Vol 474 ◽  
pp. 193-225 ◽  
Author(s):  
G. BRETHOUWER ◽  
J. C. R. HUNT ◽  
F. T. M. NIEUWSTADT

This paper presents an analysis and numerical study of the relations between the small-scale velocity and scalar fields in fully developed isotropic turbulence with random forcing of the large scales and with an imposed constant mean scalar gradient. Simulations have been performed for a range of Reynolds numbers from Reλ = 22 to 130 and Schmidt numbers from Sc = 1/25 to 144.The simulations show that for all values of Sc [ges ] 0.1 steep scalar gradients are concentrated in intermittently distributed sheet-like structures with a thickness approximately equal to the Batchelor length scale η/Sc½ with η the Kolmogorov length scale. We observe that these sheets or cliffs are preferentially aligned perpendicular to the direction of the mean scalar gradient. Due to this preferential orientation of the cliffs the small-scale scalar field is anisotropic and this is an example of direct coupling between the large- and small-scale fluctuations in a turbulent field. The numerical simulations also show that the steep cliffs are formed by straining motions that compress the scalar field along the imposed mean scalar gradient in a very short time period, proportional to the Kolmogorov time scale. This is valid for the whole range of Sc. The generation of these concentration gradients is amplified by rotation of the scalar gradient in the direction of compressive strain. The combination of high strain rate and the alignment results in a large increase of the scalar gradient and therefore in a large scalar dissipation rate.These results of our numerical study are discussed in the context of experimental results (Warhaft 2000) and kinematic simulations (Holzer & Siggia 1994). The theoretical arguments developed here follow from earlier work of Batchelor & Townsend (1956), Betchov (1956) and Dresselhaus & Tabor (1991).


Author(s):  
Adnan S. Saeed ◽  
Mohammad A. AL-Shudeifat

Rotating and vibro-impact Nonlinear Energy Sinks (NESs) have been employed for rapid and passive Targeted Energy Transfer (TET). Both have been proven to be efficient, shown high energy dissipation and have been tested experimentally. A novel type of NES that combines the two principles of nonlinear TET, rotating inertial coupling and vibro-impact, is numerically investigated on a 2 degree of freedom physical system. Two configurations of the new promising NES are considered via changing the location of the impacts. The optimized parameters of both configurations proved that high amounts of energy can be transferred from the primary system to the new promising type of NESs passively and rapidly.


2016 ◽  
Vol 799 ◽  
pp. 352-382 ◽  
Author(s):  
D. Buaria ◽  
P. K. Yeung ◽  
B. L. Sawford

Statistics of the trajectories of molecules diffusing via Brownian motion in a turbulent flow are extracted from simulations of stationary isotropic turbulence, using a postprocessing approach applicable in both forward and backward reference frames. Detailed results are obtained for Schmidt numbers ($Sc$) from 0.001 to 1000 at Taylor-scale Reynolds numbers up to 1000. The statistics of displacements of single molecules compare well with the earlier theoretical work of Saffman (J. Fluid Mech. vol. 8, 1960, pp. 273–283) except for the scaling of the integral time scale of the fluid velocity following the molecular trajectories. For molecular pairs we extend Saffman’s theory to include pairs of small but finite initial separation, which is in excellent agreement with numerical results provided that data are collected at sufficiently small times. At intermediate times the separation statistics of molecular pairs exhibit a more robust Richardson scaling behaviour than for the fluid particles. The forward scaling constant is very close to 0.55, whereas the backward constant is approximately 1.53–1.57, with a weak Schmidt number dependence, although no scaling exists if $Sc\ll 1$ at the Reynolds numbers presently accessible. An important innovation in this work is to demonstrate explicitly the practical utility of a Lagrangian description of turbulent mixing, where molecular displacements and separations in the limit of small backward initial separation can be used to calculate the evolution of scalar fluctuations resulting from a known source function in space. Lagrangian calculations of the production and dissipation rates of the scalar fluctuations are shown to agree very well with Eulerian results for the case of passive scalars driven by a uniform mean gradient. Although the Eulerian–Lagrangian comparisons are made only for $Sc\sim O(1)$, the Lagrangian approach is more easily extended to both very low and very high Schmidt numbers. The well-known scalar dissipation anomaly is accordingly also addressed in a Lagrangian context.


Sign in / Sign up

Export Citation Format

Share Document