scholarly journals Two-dimensional stability of finite-amplitude gravity waves on water of finite depth with constant vorticity

2017 ◽  
Vol 830 ◽  
pp. 631-659 ◽  
Author(s):  
M. Francius ◽  
C. Kharif

A numerical investigation of normal-mode perturbations of a two-dimensional periodic finite-amplitude gravity wave propagating on a vertically sheared current of constant vorticity is considered. For this purpose, an extension of the method developed by Rienecker & Fenton (J. Fluid Mech., vol. 104, 1981, pp. 119–137) is used for the numerical computations of the finite-amplitude waves on a linear shear current. This method enables to compute accurately waves with or without critical layers and pressure anomalies. The numerical results of the linear stability analysis extend the weakly nonlinear analytical results of Thomas et al. (Phys. Fluids, vol. 24, 2012, 127102) to fully nonlinear waves. In particular, the restabilization of the Benjamin–Feir modulational instability, whatever the depth, for an opposite shear current is confirmed. For these sideband instabilities, the numerical results show some deviations with the weakly nonlinear theory as the wave steepness of the basic wave and vorticity are increased. Besides the modulational instabilities, new instability bands corresponding to quartet and quintet instabilities, which are not sideband disturbances, are discovered. The present numerical results show that with opposite shear currents, increasing the shear reduces the growth rate of the most unstable sideband instabilities but enhances the growth rate of these quartet instabilities, which eventually dominate the Benjamin–Feir modulational instabilities.

2019 ◽  
Vol 876 ◽  
pp. 55-86 ◽  
Author(s):  
T. Gao ◽  
Z. Wang ◽  
P. A. Milewski

This work is concerned with waves propagating on water of finite depth with a constant-vorticity current under a deformable flexible sheet. The pressure exerted by the sheet is modelled by using the Cosserat thin shell theory. By means of multi-scale analysis, small amplitude nonlinear modulation equations in several regimes are considered, including the nonlinear Schrödinger equation (NLS) which is used to predict the existence of small-amplitude wavepacket solitary waves in the full Euler equations and to study the modulational instability of quasi-monochromatic wavetrains. Guided by these weakly nonlinear results, fully nonlinear steady and time-dependent computations are performed by employing a conformal mapping technique. Bifurcation mechanisms and typical profiles of solitary waves for different underlying shear currents are presented in detail. It is shown that even when small-amplitude solitary waves are not predicted by the weakly nonlinear theory, we can numerically find large-amplitude solitary waves in the fully nonlinear equations. Time-dependent simulations are carried out to confirm the modulational stability results and illustrate possible outcomes of the nonlinear evolution in unstable cases.


2019 ◽  
Vol 871 ◽  
pp. 1028-1043
Author(s):  
M. Abid ◽  
C. Kharif ◽  
H.-C. Hsu ◽  
Y.-Y. Chen

The bifurcation of two-dimensional gravity–capillary waves into solitary waves when the phase velocity and group velocity are nearly equal is investigated in the presence of constant vorticity. We found that gravity–capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found that the presence of vorticity influences strongly (i) the solitary wave properties and (ii) the growth rate of unstable transverse perturbations. The growth rate and bandwidth instability are given numerically and analytically as a function of the vorticity.


2014 ◽  
Vol 742 ◽  
Author(s):  
Simen Å. Ellingsen

AbstractLord Kelvin’s result that waves behind a ship lie within a half-angle $\phi _{\mathit{K}}\approx 19^{\circ }28'$ is perhaps the most famous and striking result in the field of surface waves. We solve the linear ship wave problem in the presence of a shear current of constant vorticity $S$, and show that the Kelvin angles (one each side of wake) as well as other aspects of the wake depend closely on the ‘shear Froude number’ $\mathit{Fr}_{\mathit{s}}=VS/g$ (based on length $g/S^2$ and the ship’s speed $V$), and on the angle between current and the ship’s line of motion. In all directions except exactly along the shear flow there exists a critical value of $\mathit{Fr}_{\mathit{s}}$ beyond which no transverse waves are produced, and where the full wake angle reaches $180^\circ $. Such critical behaviour is previously known from waves at finite depth. For side-on shear, one Kelvin angle can exceed $90^\circ $. On the other hand, the angle of maximum wave amplitude scales as $\mathit{Fr}^{-1}$ ($\mathit{Fr}$ based on size of ship) when $\mathit{Fr}\gg 1$, a scaling virtually unaffected by the shear flow.


1985 ◽  
Vol 160 ◽  
pp. 317-336 ◽  
Author(s):  
D. I. Pullin ◽  
R. H. J. Grimshaw

In the preceding paper (Grimshaw & Pullin 1985) we discussed the long-wavelength modulational instability of interfacial progressive waves in a two-layer fluid. In this paper we complement our analytical results by numerical results for the linearized stability of finite-amplitude waves. We restrict attention to the case when the lower layer is infinitely deep, and use the Boussinesq approximation. For this case the basic wave profile has been calculated by Pullin & Grimshaw (1983a, b). The linearized stability problem for perturbations to the basic wave is solved numerically by seeking solutions in the form of truncated Fourier series, and solving the resulting eigenvalue problem for the growth rate as a function of the perturbation wavenumber. For small or moderate basic wave amplitudes we show that the instabilities are determined by a set of low-order resonances. The lowest resonance, which contains the modulational instability, is found to be dominant for all cases considered. For higher wave amplitudes, the resonance instabilities are swamped by a local wave-induced Kelvin–Helmholtz instability.


1990 ◽  
Vol 217 ◽  
pp. 115-141 ◽  
Author(s):  
Jinn-Hwa Shyu ◽  
O. M. Phillips

Surface waves superimposed upon a larger-scale flow are blocked at the points where the group velocities balance the convection by the larger-scale flow. Two types of blockage, capillary and gravity, are investigated by using a new multiple-scale technique, in which the short waves are treated linearly and the underlying larger-scale flows are assumed steady but can have a considerably curved surface and uniform vorticity. The technique first provides a uniformly valid second-order ordinary differential equation, from which a consistent uniform asymptotic solution can readily be obtained by using a treatment suggested by the result of Smith (1975) who described the phenomenon of gravity blockage in an unsteady current with finite depth.The corresponding WKBJ solution is also derived as a consistent asymptotic expansion of the uniform solution, which is valid at points away from the blockage point. This solution is obviously represented by a linear combination of the incident and reflected waves, and their amplitudes take explicit forms so that it can be shown that even with a significantly varied effective gravity g’ and constant vorticity, wave action will remain conserved for each wave. Furthermore, from the relative amplitudes of the incident and reflected waves, we clearly demonstrate that the action fluxes carried by the two waves towards and away from the blockage point are equal within the present approximation.The blockage of gravity–capillary waves can occur at the forward slopes of a finite-amplitude dominant wave as suggested by Phillips (1981). The results show that the blocked waves will be reflected as extremely short capillaries and then dissipated rapidly by viscosity. Therefore, for a fixed dominant wave, all wavelets shorter than a limiting wavelength will be suppressed by this process. The minimum wavelengths coexisting with the long waves of various wavelengths and slopes are estimated.


Author(s):  
Hung-Chu Hsu ◽  
Marc Francius ◽  
Pablo Montalvo ◽  
Christian Kharif

This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima.


Author(s):  
Didier Clamond

The velocity and other fields of steady two-dimensional surface gravity waves in irrotational motion are investigated numerically. Only symmetric waves with one crest per wavelength are considered, i.e. Stokes waves of finite amplitude, but not the highest waves, nor subharmonic and superharmonic bifurcations of Stokes waves. The numerical results are analysed, and several conjectures are made about the velocity and acceleration fields.


1981 ◽  
Vol 25 (3) ◽  
pp. 451-457 ◽  
Author(s):  
P. K. Shukla ◽  
M. Y. Yu

It is shown that a finite-amplitude ion-acoustic wave in a uniform magneto- plasma can enhance two-dimensional plasma vortices. The latter results from a modulational instability. The growth rates are obtained analytically.


2020 ◽  
Author(s):  
Ton van den Bremer ◽  
James Steer ◽  
Dimitris Stagonas ◽  
Eugeny Buldakov ◽  
Alistair Borthwick

<p>We examine experimentally the dispersion and stability of weakly nonlinear waves on opposing linearly vertically sheared current profiles (with constant vorticity). Measurements are compared against predictions from the unidirectional  1D+1 constant vorticity nonlinear Schrödinger equation (the vor-NLSE) derived by Thomas et al. (Phys. Fluids, vol. 24, no. 12, 2012, 127102). The shear rate is negative in opposing currents when the magnitude of the current in the laboratory reference frame is negative (i.e. opposing the direction of wave propagation) and reduces with depth, as is most commonly encountered in nature. Compared to a uniform current with the same surface velocity, negative shear has the effect of increasing wavelength and enhancing stability. In experiments with a regular low-steepness wave, the dispersion relationship between wavelength and frequency is examined on five opposing current profiles with shear rates from 0 to -0,87 s<sup>-1</sup> For all current profiles, the linear constant vorticity dispersion relation predicts the wavenumber to within the 95% confidence bounds associated with estimates of shear rate and surface current velocity. The effect of shear on modulational instability was determined by the spectral evolution of a carrier wave seeded with spectral sidebands on opposing current profiles with shear rates between 0 and -0.48 s<sup>-1</sup>. Numerical solutions of the vor-NLSE are consistently found to predict sideband growth to within two standard deviations across repeated experiments, performing considerably better than its uniform-current NLSE counterpart. Similarly, the amplification of experimental wave envelopes is predicted well by numerical solutions of the vor-NLSE, and significantly over-predicted by the uniform-current NLSE.</p>


2018 ◽  
Vol 854 ◽  
pp. 146-163 ◽  
Author(s):  
H. C. Hsu ◽  
C. Kharif ◽  
M. Abid ◽  
Y. Y. Chen

A nonlinear Schrödinger equation for the envelope of two-dimensional gravity–capillary waves propagating at the free surface of a vertically sheared current of constant vorticity is derived. In this paper we extend to gravity–capillary wave trains the results of Thomas et al. (Phys. Fluids, 2012, 127102) and complete the stability analysis and stability diagram of Djordjevic & Redekopp (J. Fluid Mech., vol. 79, 1977, pp. 703–714) in the presence of vorticity. The vorticity effect on the modulational instability of weakly nonlinear gravity–capillary wave packets is investigated. It is shown that the vorticity modifies significantly the modulational instability of gravity–capillary wave trains, namely the growth rate and instability bandwidth. It is found that the rate of growth of modulational instability of short gravity waves influenced by surface tension behaves like pure gravity waves: (i) in infinite depth, the growth rate is reduced in the presence of positive vorticity and amplified in the presence of negative vorticity; (ii) in finite depth, it is reduced when the vorticity is positive and amplified and finally reduced when the vorticity is negative. The combined effect of vorticity and surface tension is to increase the rate of growth of modulational instability of short gravity waves influenced by surface tension, namely when the vorticity is negative. The rate of growth of modulational instability of capillary waves is amplified by negative vorticity and attenuated by positive vorticity. Stability diagrams are plotted and it is shown that they are significantly modified by the introduction of the vorticity.


Sign in / Sign up

Export Citation Format

Share Document