Singularity formation on perturbed planar shock waves

2018 ◽  
Vol 846 ◽  
pp. 536-562 ◽  
Author(s):  
W. Mostert ◽  
D. I. Pullin ◽  
R. Samtaney ◽  
V. Wheatley

We present an analysis that predicts the time to development of a singularity in the shape profile of a spatially periodic perturbed, planar shock wave for ideal gas dynamics. Beginning with a formulation in complex coordinates of Whitham’s approximate model geometrical shock dynamics (GSD), we apply a spectral treatment to derive the asymptotic form for the leading-order behaviour of the shock Fourier coefficients for large mode numbers and time. This is shown to determine a critical time at which the coefficients begin to decay, with respect to mode number, at an algebraic rate with an exponent of $-5/2$, indicating loss of analyticity and the formation of a singularity in the shock geometry. The critical time is found to be inversely proportional to a representative measure of perturbation amplitude $\unicode[STIX]{x1D716}$ with an explicit analytic form for the constant of proportionality in terms of gas and shock parameters. To leading order, the time to singularity formation is dependent only on the first Fourier mode. Comparison with results of numerical solutions to the full GSD equations shows that the predicted critical time somewhat underestimates the time for shock–shock (triple-point) formation, where the latter is obtained by post-processing the numerical GSD results using an edge-detection algorithm. Aspects of the analysis suggest that the appearance of loss of analyticity in the shock surface may be a precursor to the first appearance of shock–shocks, which may account for part of the discrepancy. The frequency of oscillation of the shock perturbation is accurately predicted. In addition, the analysis is extended to the evolution of a perturbed planar, fast magnetohydrodynamic shock for the case when the external magnetic field is aligned parallel to the unperturbed shock. It is found that, for a strong shock, the presence of the magnetic field produces only a higher-order correction to the GSD equations with the result that the time to loss of analyticity is the same as for the gas-dynamic flow. Limitations and improvements for the analysis are discussed, as are comparisons with the analogous appearance of singularity formation in vortex-sheet evolution in an incompressible inviscid fluid.

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


2007 ◽  
Vol 62 (1-2) ◽  
pp. 21-28
Author(s):  
Hilmi Demiray

In this work, treating an artery as a prestressed thin-walled elastic tube and the blood as an inviscid fluid, the interactions of two nonlinear waves propagating in opposite directions are studied in the longwave approximation by use of the extended PLK (Poincaré-Lighthill-Kuo) perturbation method. The results show that up to O(k3), where k is the wave number, the head-on collision of two solitary waves is elastic and the solitary waves preserve their original properties after the interaction. The leading-order analytical phase shifts and the trajectories of two solitons after the collision are derived explicitly.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 458 ◽  
Author(s):  
Astha Chauhan ◽  
Rajan Arora ◽  
Mohd Siddiqui

Blast waves are generated when an area grows abruptly with a supersonic speed, as in explosions. This problem is quite interesting, as a large amount of energy is released in the process. In contrast to the situation of imploding shocks in ideal gas, where a vast literature is available on the effect of magnetic fields, very little is known about blast waves propagating in a magnetic field. As this problem is highly nonlinear, there are very few techniques that may provide even an approximate analytical solution. We have considered a problem on planar and radially symmetric blast waves to find an approximate solution analytically using Sakurai’s technique. A magnetic field has been taken in the transverse direction. Gas particles are supposed to be propagating orthogonally to the magnetic field in a non-deal medium. We have further assumed that specific conductance of the medium is infinite. Using Sakurai’s approach, we have constructed the solution in a power series of ( C / U ) 2 , where C is the velocity of sound in an ideal gas and U is the velocity of shock front. A comparison of obtained results in the absence of a magnetic field within the published work of Sakurai has been made to generate the confidence in our results. Our results match well with the results reported by Sakurai for gas dynamics. The flow variables are computed behind the leading shock and are shown graphically. It is very interesting that the solution of the problem is obtained in closed form.


2018 ◽  
Vol 75 (4) ◽  
pp. 1231-1241 ◽  
Author(s):  
Richard Rotunno ◽  
George H. Bryan

Abstract Laboratory observations of the leeside hydraulic jump indicate it consists of a statistically stationary turbulent motion in an overturning wave. From the point of view of the shallow-water equations (SWE), the hydraulic jump is a discontinuity in fluid-layer depth and velocity at which kinetic energy is dissipated. To provide a deeper understanding of the leeside hydraulic jump, three-dimensional numerical solutions of the Navier–Stokes equations (NSE) are carried out alongside SWE solutions for nearly identical physical initial-value problems. Starting from a constant-height layer flowing over a two-dimensional obstacle at constant speed, it is demonstrated that the SWE solutions form a leeside discontinuity owing to the collision of upstream-moving characteristic curves launched from the obstacle. Consistent with the SWE solution, the NSE solution indicates the leeside hydraulic jump begins as a steepening of the initially horizontal density interface. Subsequently, the NSE solution indicates overturning of the density interface and a transition to turbulence. Analysis of the initial-value problem in these solutions shows that the tendency to form either the leeside height–velocity discontinuity in the SWE or the overturning density interface in the exact NSE is a feature of the inviscid, nonturbulent fluid dynamics. Dissipative turbulent processes associated with the leeside hydraulic jump are a consequence of the inviscid fluid dynamics that initiate and maintain the locally unstable conditions.


Sign in / Sign up

Export Citation Format

Share Document