scholarly journals Optimal mixing in three-dimensional plane Poiseuille flow at high Péclet number

2018 ◽  
Vol 850 ◽  
pp. 875-923 ◽  
Author(s):  
L. Vermach ◽  
C. P. Caulfield

We consider a passive zero-mean scalar field organised into two layers of different concentrations in a three-dimensional plane channel flow subjected to a constant along-stream pressure gradient. We employ a nonlinear direct-adjoint-looping method to identify the optimal initial perturbation of the velocity field with given initial energy which yields ‘maximal’ mixing by a target time horizon, where maximal mixing is defined here as the minimisation of the spatially integrated variance of the concentration field. We verify in three-dimensional flows the conjecture by Foures et al. (J. Fluid Mech., vol. 748, 2014, pp. 241–277) that the initial perturbation which maximises the time-averaged energy gain of the flow leads to relatively weak mixing, and is qualitatively different from the optimal initial ‘mixing’ perturbation which exploits classical Taylor dispersion. We carry out the analysis for two different Reynolds numbers ($Re=U_{m}h/\unicode[STIX]{x1D708}=500$ and $Re=3000$, where $U_{m}$ is the maximum flow speed of the unperturbed flow, $h$ is the channel half-depth and $\unicode[STIX]{x1D708}$ is the kinematic viscosity of the fluid) demonstrating that this key finding is robust with respect to the transition to turbulence. We also identify the initial perturbations that minimise, at chosen target times, the ‘mix-norm’ of the concentration field, i.e. a Sobolev norm of negative index in the class introduced by Mathew et al. (Physica D, vol. 211, 2005, pp. 23–46). We show that the ‘true’ variance-based mixing strategy can be successfully and practicably approximated by the mix-norm minimisation since we find that the mix-norm-optimal initial perturbations are far less sensitive to changes in the target time horizon than their optimal variance-minimising counterparts.

1984 ◽  
Vol 148 ◽  
pp. 413-442 ◽  
Author(s):  
S. Biringen

This paper involves a numerical simulation of the final stages of transition to turbulence in plane channel flow at a Reynolds number of 1500. Three-dimensional incompressible Navier–Stokes equations are numerically integrated to obtain the time evolution of two- and three-dimensional finite-amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32 × 51 × 32 grid. Solutions indicate the existence of structures similar to those observed in the laboratory and characteristic of the various stages of transition that lead to final breakdown. In particular, evidence points to the formation of a A-shaped vortex and the subsequent system of horsehoe vortices inclined to the main flow direction as the primary elements of transition. Details of the resulting flow field after breakdown indicate the evolution of streaklike formations found in turbulent flows. Although the flow field does approach a steady state (turbulent channel flow), the introduction of subgrid-scale terms seems necessary to obtain fully developed turbulence statistics.


Author(s):  
Geng Liu ◽  
Weili Jiang ◽  
Xudong Zheng ◽  
Qian Xue

Abstract Phocid seals detect and track artificial or biogenic hydrodynamic trails based on mechanical signals of their whisker arrays. In this paper, we investigated the correlations between flow structures and whisker array signals using a simplified numerical model of fluid-structure interaction (FSI). Three-dimensional (3D) wakes of moving paddles in three different shapes (rectangular plate, undulated plate, and circular cylinder) were simulated using an in-house immersed-boundary-method-based computational fluid dynamics (CFD) solver. One-way FSI was then simulated to obtain the dynamic behavior and root signal of each whisker in the two whisker arrays on a seal head in each wake. The position, geometry, and material of each whisker were modeled based on the measurements reported in literatures. The correlations between the wake structures and whisker array signals were analyzed. It was found that the patterns of the signals on the whisker arrays can reflect the strength, timing, and moving trajectories of the jets induced by the vortices in the wakes. Specifically, the rectangular plate generates the strongest starting vortex ring as well as the strongest jets, while the undulated plate generates the weakest ones. These flow features are fully reflected by the largest whisker signal magnitude in the rectangular plate sensing and the smallest one in the undulated plate sensing. Moreover, the timing of the signal initiation and the maximum signal agree well with the timing of the jet reaching the arrays and the maximum flow speed, respectively. The correlation coefficient between the moving trajectories of the jet and the movement of the high signal level region in the array was found to be higher than 0.9 in the rectangular plate case. The results provide a physical insight into the mechanisms of seal whisker flow sensing.


2018 ◽  
Vol 844 ◽  
pp. 669-706
Author(s):  
F. Alizard ◽  
A. Cadiou ◽  
L. Le Penven ◽  
B. Di Pierro ◽  
M. Buffat

The laminar–turbulent transition of a plane channel entrance flow is revisited using global linear optimization analyses and direct numerical simulations. The investigated case corresponds to uniform upstream velocity conditions and a moderate value of Reynolds number so that the two-dimensional developing flow is linearly stable under the parallel flow assumption. However, the boundary layers in the entry zone are capable of supporting the development of streaks, which may experience secondary instability and evolve to turbulence. In this study, global optimal linear perturbations are computed and studied in the nonlinear regime for different values of streak amplitude and optimization time. These optimal perturbations take the form of wavepackets having either varicose or sinuous symmetry. It is shown that, for short optimization times, varicose wavepackets grow through a combination of Orr and lift-up effects, whereas for longer target times, both sinuous and varicose wavepackets exhibit an instability mechanism driven by the presence of inflection points in the streaky flow. In addition, while the optimal varicose modes obtained for short optimization times are localized near the inlet, where the base flow is strongly three-dimensional, when the target time is increased, the sinuous and varicose optimal modes are displaced farther downstream, in the nearly parallel streaky flow. Finally, the optimal wavepackets are found to lead to turbulence for sufficiently high initial amplitudes. It is noticed that the resulting turbulent flows have the same wall-shear stress, whether the wavepackets have been obtained for short or for long time optimization.


2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


Author(s):  
S. V. Subramanian ◽  
R. Bozzola ◽  
Louis A. Povinelli

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.


2011 ◽  
Vol 23 (6) ◽  
pp. 064106 ◽  
Author(s):  
Nicolas Kanaris ◽  
Dimokratis Grigoriadis ◽  
Stavros Kassinos

1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


1989 ◽  
Vol 111 (1) ◽  
pp. 114-120 ◽  
Author(s):  
A. S. Lavine ◽  
M. Y. Kim ◽  
C. N. Shores

An experimental investigation of opposing mixed convection in an inclined pipe has been conducted. Dye injection reveals the existence of flow reversal regions. There is an optimal tilt angle that yields maximum flow reversal length. Flow reversals are seen to cause early transition to turbulence. Temperature profiles are measured across the tube cross section near the entrance to the heated section, and show the effect of tube inclination. Temperature measurements exhibit periodic behavior in the flow reversal region under some conditions, generally characterized by low tilt angle and moderate to high Reynolds and Grashof numbers. Flow visualization indicates that this periodic behavior is due to the intermittent breakdown of the flow reversal region.


Sign in / Sign up

Export Citation Format

Share Document