scholarly journals Magnetohydrodynamic stability of large scale liquid metal batteries

2018 ◽  
Vol 852 ◽  
pp. 453-483 ◽  
Author(s):  
A. Tucs ◽  
V. Bojarevics ◽  
K. Pericleous

The aim of this paper is to develop a stability theory and a numerical model for three density-stratified electrically conductive liquid layers. Using regular perturbation methods to reduce the full three-dimensional problem to the shallow layer model, the coupled wave and electric current equations are derived. The problem set-up allows for weakly nonlinear velocity field action and an arbitrary vertical magnetic field. Further linearisation of the coupled equations is used for the linear stability analysis in the case of a uniform vertical magnetic field. New analytical stability criteria accounting for the viscous damping are derived for particular cases of practical interest and compared to the numerical solutions for a variety of materials used in batteries. These new criteria are equally applicable to the aluminium electrolysis cell magnetohydrodynamic (MHD) stability estimates.

2002 ◽  
Vol 20 (8) ◽  
pp. 1193-1201 ◽  
Author(s):  
S. Shalimov ◽  
C. Haldoupis

Abstract. Recently, Shalimov et al. (1999) proposed a new mechanism for large-scale accumulation of long-lived metallic ions in the mid-latitude ionosphere driven by planetary waves in the lower thermosphere. In this mechanism, the combined action of frictional and horizontal magnetic field forces at E-region altitudes causes the plasma to converge and accumulate in large areas of positive neutral wind vorticity within a propagating planetary wave. The present paper provides a theoretical formulation for this mechanism by modelling both horizontal and vertical plasma transport effects within a planetary wave vortex, of cyclonic neutral wind. Non-steady-state numerical solutions of the ion continuity equation show that the proposed accumulation process can enhance the ionization significantly inside the planetary wave vortex but its efficiency depends strongly on altitude, whereas on the other hand, it can be complicated by vertical plasma motions. The latter, which are driven by the same planetary wave wind field under the action of the vertical Lorentz force and meridional wind forcing along the magnetic field lines, can lead to either plasma compressions or depletions, depending on the prevailing wind direction. We conclude that, for shorter times, vertical plasma transport may act constructively to the horizontal gathering process to produce considerable E-region plasma accumulation over large sectors of a planetary wave vortex of cyclonic winds.Key words. Ionosphere (ionosphere-atmosphere interactions; mid-latitude ionosphere; sporadic E-layers) – Meteorology and atmospheric dynamics (waves and tides)


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Kerstin Kunze

Magnetic fields are observed on a large range of scales in the universe. Up until recently, the evidence always pointed to magnetic fields associated with some kind of structure, from planets to clusters of galaxies. Blazar observations have been used to posit the first evidence of truly cosmological magnetic fields or void magnetic fields. A cosmological magnetic field generated in the very early universe before recombination has implications for the cosmic microwave background (CMB), large scale structure as well as the 21 cm line signal. In particular, the Lorentz term causes a change in the linear matter power spectrum. Its implication on the 21 cm line signal was the focus of our recent simulations which will be summarised here. Modelling the cosmological magnetic field as a gaussian random field numerical solutions were found for magnetic fields with present day amplitudes of 5 nG and negative spectral indices which are within the range of observational constraints imposed by the cosmic microwave background (CMB).


1989 ◽  
Vol 199 ◽  
pp. 217-236 ◽  
Author(s):  
Oliver S. Kerr ◽  
A. A. Wheeler

In this paper we investigate the effect of a weak vertical magnetic field on the boundary-layer flow of an electrically conducting fluid past a vertical heated wall. We derive similarity solutions for the flow and temperature and show that the flow is composed of three regions: an inner region where the flow is a regular perturbation of the classical boundary-layer flow due to a heated semi-infinite vertical plate; an inviscid outer region where fluid is entrained from downwards towards the plate; and beyond this a quiescent region, separated from the outer region by a free shear layer. Thus the effect of the magnetic field is to inhibit the entrainment of fluid across the magnetic field lines in the whole region and confine it to an outer boundary layer.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


2021 ◽  
Vol 33 (3) ◽  
pp. 034130
Author(s):  
Ankan Banerjee ◽  
Manojit Ghosh ◽  
Lekha Sharma ◽  
Pinaki Pal

2019 ◽  
Vol 867 ◽  
pp. 661-690 ◽  
Author(s):  
Oleg Zikanov ◽  
Dmitry Krasnov ◽  
Thomas Boeck ◽  
Semion Sukoriansky

Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. (Exp. Fluids, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


Sign in / Sign up

Export Citation Format

Share Document