Similarity of wake meandering for different wind turbine designs for different scales

2018 ◽  
Vol 842 ◽  
pp. 5-25 ◽  
Author(s):  
Daniel Foti ◽  
Xiaolei Yang ◽  
Fotis Sotiropoulos

The wake meandering characteristics of four different wind turbine designs with diameters ranging from a few centimetres (wind tunnel scale) to a hundred metres (utility scale) are investigated using large-eddy simulation with the turbine blades and nacelle parametrised using a new actuator surface model. Different velocity fields and meandering behaviours are observed at near-wake locations. At far-wake locations, on the other hand, the mean velocity deficit profiles begin to collapse when scaled by the centreline velocity deficit based on the incoming wind speed at turbine hub height, suggesting far-wake similarity across scales. The turbine-added turbulence kinetic energy profiles are shown to also nearly collapse with each other in the far wake when normalised using a velocity scale defined by the thrust on the turbine rotor. Moreover, we show that at far-wake locations, the simulated flow fields for all four turbine designs exhibit similar wake meandering characteristics in terms of (1) a Strouhal number independent of rotor designs of different sizes and (2) the distributions of wake meandering wavelengths and amplitudes when normalised by the rotor diameter and a length scale defined by the turbine thrust respectively.

2014 ◽  
Vol 31 (7) ◽  
pp. 1529-1539 ◽  
Author(s):  
Matthew L. Aitken ◽  
Julie K. Lundquist

Abstract To facilitate the optimization of turbine spacing at modern wind farms, computational simulations of wake effects must be validated through comparison with full-scale field measurements of wakes from utility-scale turbines operating in the real atmosphere. Scanning remote sensors are particularly well suited for this objective, as they can sample wind fields over large areas at high temporal and spatial resolutions. Although ground-based systems are useful, the vantage point from the nacelle is favorable in that scans can more consistently transect the central part of the wake. To the best of the authors’ knowledge, the work described here represents the first analysis in the published literature of a utility-scale wind turbine wake using nacelle-based long-range scanning lidar. The results presented are of a field experiment conducted in the fall of 2011 at a wind farm in the western United States, quantifying wake attributes such as the velocity deficit, centerline location, and wake width. Notable findings include a high average velocity deficit, decreasing from 60% at a downwind distance x of 1.8 rotor diameters (D) to 40% at x = 6D, resulting from a low average wind speed and therefore a high average turbine thrust coefficient. Moreover, the wake width was measured to expand from 1.5D at x = 1.8D to 2.5D at x = 6D. Both the wake growth rate and the amplitude of wake meandering were observed to be greater for high ambient turbulence intensity and daytime conditions as compared to low turbulence and nocturnal conditions.


2019 ◽  
Vol 869 ◽  
pp. 1-26 ◽  
Author(s):  
Daniel Foti ◽  
Xiaolei Yang ◽  
Lian Shen ◽  
Fotis Sotiropoulos

Wake meandering, a phenomenon of large-scale lateral oscillation of the wake, has significant effects on the velocity deficit and turbulence intensities in wind turbine wakes. Previous studies of a single turbine (Kang et al., J. Fluid. Mech., vol. 774, 2014, pp. 374–403; Foti et al., Phys. Rev. Fluids, vol. 1 (4), 2016, 044407) have shown that the turbine nacelle induces large-scale coherent structures in the near field that can have a significant effect on wake meandering. However, whether nacelle-induced coherent structures at the turbine scale impact the emergent turbine wake dynamics at the wind farm scale is still an open question of both fundamental and practical significance. We take on this question by carrying out large-eddy simulation of atmospheric turbulent flow over the Horns Rev wind farm using actuator surface parameterisations of the turbines without and with the turbine nacelle taken into account. While the computed mean turbine power output and the mean velocity field away from the nacelle wake are similar for both cases, considerable differences are found in the turbine power fluctuations and turbulence intensities. Furthermore, wake meandering amplitude and area defined by wake meanders, which indicates the turbine wake unsteadiness, are larger for the simulations with the turbine nacelle. The wake influenced area computed from the velocity deficit profiles, which describes the spanwise extent of the turbine wakes, and the spanwise growth rate, on the other hand, are smaller for some rows in the simulation with the nacelle model. Our work shows that incorporating the nacelle model in wind farm scale simulations is critical for accurate predictions of quantities that affect the wind farm levelised cost of energy, such as the dynamics of wake meandering and the dynamic loads on downwind turbines.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.


Author(s):  
Tarak N. Nandi ◽  
Andreas Herrig ◽  
James G. Brasseur

Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25–50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue ‘Wind energy in complex terrains’.


Author(s):  
M. H. Hansen

The aeroelastic stability of a three-bladed wind turbine is considered with respect to classical flutter. Previous studies have shown that the risk of stall-induced vibrations of turbine blades is related to the dynamics of the complete turbine, for example does the aerodynamic damping of a rotor whirling mode depend highly on the tower stiffness. The results of this paper indicate that the turbine dynamics also affect the risk of flutter. The study is based on an eigenvalue analysis of a linear aeroelastic turbine model. In an example of a MW sized turbine, the critical frequency of the first torsional blade mode is determined for which flutter can occur under normal operation conditions. It is shown that this critical torsional frequency is higher when the blades are interacting through the hub with the remaining turbine, than when all blades are rigidly clamped at the root. Thus, the dynamics of the turbine has increased the risk of flutter.


2020 ◽  
Author(s):  
Peyman Poozesh ◽  
Alessandro Sabato ◽  
Aral Sarrafi ◽  
Christopher Niezrecki ◽  
Peter Avitabile ◽  
...  

Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document