Mechanism of reduction of aeroacoustic sound by porous material: comparative study of microscopic and macroscopic models

2021 ◽  
Vol 929 ◽  
Author(s):  
Yasunori Sato ◽  
Yuji Hattori

The effects of porous material on the aeroacoustic sound generated in a two-dimensional low-Reynolds-number flow ( $Re=150$ ) past a circular cylinder are studied by direct numerical simulation in which the acoustic waves of small amplitudes are obtained directly as a solution to the compressible Navier–Stokes equations. Two models are introduced for the porous material: the microscopic model, in which the porous material is a collection of small cylinders, and the macroscopic model, in which the porous material is continuum characterized by permeability. The corrected volume penalization method is used to deal with the core cylinder, the small cylinders and the porous material. In the microscopic model, significant reduction of the aeroacoustic sound is found depending on the parameters; the maximum reduction of $24.4$ dB from the case of a bare cylinder is obtained. The results obtained for the modified macroscopic model are in good agreement with those obtained for the microscopic model converted by the theory of homogenization, which establishes that the microscopic and macroscopic models are consistent and valid. The detailed mechanism of sound reduction is elucidated. The presence of a fluid region between the porous material and the core cylinder is important for sound reduction. When the sound is strongly reduced, the pressure field behind the cylinder becomes nearly uniform with a high value to stabilize the shear layer in the wake; as a result, the vortex shedding behind the cylinder is delayed to the far wake to suppress the unsteady vortex motion near the cylinder, which is responsible for the aeroacoustic sound.

SPE Journal ◽  
2009 ◽  
Vol 14 (01) ◽  
pp. 14-29 ◽  
Author(s):  
Pietro Poesio ◽  
Gijsbert Ooms

Summary The aim of this paper is to investigate experimentally the fouling of a porous material by external particles and the optimal way to clean the porous material with high-frequency acoustic waves. In particular, we are interested in the fouling by mud particles of the near-wellbore region of an oil reservoir. In the experiments, therefore, we used natural sandstone as porous material and mud particles as fouling particles. To generate fouling, mud particles were flushed through a sandstone core. Next, the core was treated with very short bursts of ultrasound, and the change in permeability was measured after each burst. (Earlier papers report only the end result after applying the total amount of acoustic energy.) Experiments were carried out under different acoustic-cleaning conditions to investigate the influence of the relevant parameters on the cleaning process. For instance, the amplitude of the acoustic waves, the duration of the bursts, and the time between the bursts were varied. During the ultrasonic-cleaning process, brine flowed through the core. The effect of this flow was studied by changing the flow rate. Also, the effect of the temperature, pressure, and initial core permeability on the cleaning process was investigated. The experimental results show that short bursts of acoustic energy are more efficient for cleaning than long bursts or continuous application of ultrasound (for the same total amount of acoustic energy). The overall conclusion is that the optimal method of ultrasonic cleaning is to apply many very short bursts of low-amplitude acoustic energy, with a short rest time between the bursts while keeping the liquid (brine) flow at a very low velocity. More acoustic energy is needed to clean a core with a high initial permeability than a core with a low initial permeability. At low pressure, cavitation occurs and prevents the generation of ultrasonic bursts. Cavitation can even have a negative effect on the cleaning process. Introduction Reduction of permeability in the near-wellbore region is a major problem for the oil industry. It causes a reduction in the oil-production rate and in the total oil that can be withdrawn from an oil reservoir. Several techniques have been developed to solve this problem, such as hydraulic fracturing and acid injection. These techniques have negative side effects: e.g., they are expensive, environmentally unfriendly, and require production shutoff. New techniques are being developed (Tambini 2003); among them, ultrasonic stimulation is promising. Field tests to investigate the applicability of ultrasonic cleaning were carried out in Russia during the 1980s and showed contradictory results: An increase in permeability was reported in 50% of the cases, while no improvement or deterioration was reported in the other 50% (Beresnev and Johnson 1994). No explanation for this is available; therefore, we think a more fundamental investigation of the technique is necessary. As it is often difficult to make a satisfactory interpretation of field tests, laboratory experiments are crucial. The first laboratory studies concerning the application of ultrasound to clean a porous material were performed by Venkitaraman et al. (1995) and Roberts et al. (2000). They investigated the cleaning of porous materials that were damaged by different fouling mechanisms:fouling by very small particles (fines) that were released from the porous material by the flow of brine through the material (internal fouling) andfouling by mud particles or polymers from the outside into the porous material (external fouling). Poesio and Ooms (2004) and Poesio et al. (2004) performed detailed studies on the acoustic removal of fines from a porous material. Van der Bas et al. (2004a) performed experiments on oil-saturated rocks and gravel-pack completion. They reported positive effects after the application of ultrasound bursts. Van der Bas et al. (2004b) also reported the application of ultrasound by a prototype acoustic tool in a radial geometry. Preliminary results were so encouraging that a new prototype was planned. In this paper, we focus on removing particles caused by external fouling. We will pay particular attention to the effect of short acoustic pulses to find an optimal way to use the acoustic energy. Moreover, the influence of many relevant parameters is reported. In the next section, we discuss the experimental setup and experimental procedure taken throughout the investigation. The fouling process and the measurement results for the level of fouling and for the penetration depth are given in the section after that, followed by a discussion of the ultrasonic-stimulation results. Conclusions are drawn in the final section.


2021 ◽  
Author(s):  
Jens Satria Müller ◽  
Finn Lückoff ◽  
Thomas Ludwig Kaiser ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract In order to determine the flame transfer function of a combustion system only based on isothermal flow field data, three governing mechanisms have been identified which need to be modeled: swirl fluctuations, equivalence fluctuations and velocity fluctuations excited by planar acoustic waves. This study focuses on the generation and propagation of swirl fluctuations downstream of a radial swirl combustor under isothermal conditions. Swirl fluctuations are generated experimentally by imposing acoustic perturbations. Time-resolved longitudinal and crosswise PIV measurements are conducted inside the mixing tube and combustion chamber to quantify the evolution of the swirl fluctuations. The measured flow response is decomposed using spectral proper orthogonal decomposition to unravel the contributions of different dynamical modes. In addition a resolvent analysis is conducted based on the linearized Navier-Stokes equations to reveal the intrinsically most amplified flow structures. Both, the data-driven and analytic approach, show that inertial waves are indeed present in the flow response and an inherent flow instability downstream of the swirler, which confirms the recent theoretical work of Albayrak et al. (Journal of Fluid Mechanics, 879). However, the contribution of these inertial waves to the total swirl fluctuations turns out to be very small. This is suggested to be due to the very structured forcing at the swirler and the amplification of shear-driven modes which are expected to be much more influential for this type of swirler. Overall, this work confirms the presence of inertial waves in highly turbulent swirl combustors and evaluates its relevance for industry-related configurations. It further outlines a methodology to analyze and predict their characteristics based on mean fields only, which is applicable for complex geometries of industrial relevance.


2015 ◽  
Vol 31 (6) ◽  
pp. 683-691 ◽  
Author(s):  
C-H. Hsiao ◽  
D.-L. Young

AbstractIn this paper, two formulations in explicit form to derive the fundamental solutions for two and three dimensional unsteady unbounded Stokes flows due to a mass source and a point force are presented, based on the vector calculus method and also the Hörmander’s method. The mathematical derivation process for the fundamental solutions is detailed. The steady fundamental solutions of Stokes equations can be obtained from the unsteady fundamental solutions by the integral process. As an application, we adopt fundamental solutions: an unsteady Stokeslet and an unsteady potential dipole to validate a simple case that a sphere translates in Stokes or low-Reynolds-number flow by using the singularity method instead by the traditional method which in general limits to the assumption of oscillating flow. It is concluded that this study is able to extend the unsteady Stokes flow theory to more general transient motions by making use of the fundamental solutions of the linearly unsteady Stokes equations.


2015 ◽  
Vol 25 (13) ◽  
pp. 2439-2475 ◽  
Author(s):  
Pierre Degond ◽  
Laurent Navoret

We present an individual-based model describing disk-like self-propelled particles moving inside parallel planes. The disk directions of motion follow alignment rules inside each layer. Additionally, the disks are subject to interactions with those of the neighboring layers arising from volume exclusion constraints. These interactions affect the disk inclinations with respect to the plane of motion. We formally derive a macroscopic model composed of planar self-organized hydrodynamic (SOH) models describing the transport of mass and evolution of mean direction of motion of the disks in each plane, supplemented with transport equations for the mean disk inclination. These planar models are coupled due to the interactions with the neighboring planes. Numerical comparisons between the individual-based and macroscopic models are carried out. These models could be applicable, for instance, to describe sperm-cell collective dynamics.


2020 ◽  
Vol 494 (3) ◽  
pp. 3141-3155 ◽  
Author(s):  
Umin Lee

ABSTRACT We calculate small amplitude gravitational and thermal tides of uniformly rotating hot Jupiters composed of a nearly isentropic convective core and a geometrically thin radiative envelope. We treat the fluid in the convective core as a viscous fluid and solve linearized Navier–Stokes equations to obtain tidal responses of the core, assuming that the Ekman number, Ek, is a constant parameter. In the radiative envelope, we take account of the effects of radiative dissipations on the responses. The properties of tidal responses depend on thermal time-scales τ* in the envelope and Ekman number, Ek, in the core and on whether the forcing frequency ω is in the inertial range or not, where the inertial range is defined by |ω| ≤ 2Ω for the rotation frequency Ω. If Ek ≳ 10−7, the viscous dissipation in the core is dominating the thermal contributions in the envelope for τ* ≳ 1 d. If Ek ≲ 10−7, however, the viscous dissipation is comparable to or smaller than the thermal contributions and the envelope plays an important role to determine the tidal torques. If the forcing is in the inertial range, frequency resonance of the tidal forcing with core inertial modes significantly affects the tidal torques, producing numerous resonance peaks of the torque. Depending on the sign of the torque in the peaks, we suggest that there exist cases in which the resonance with core inertial modes hampers the process of synchronization between the spin and orbital motion of the planets.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Alexander Braginsky

Abstract In this paper, we study the vortex motion of a continuous medium, which is described by forces obtained from the principle of least action. It is shown that in a continuous medium the vortex force components are proportional to the velocity and pressure gradient components. This article gives a description of the 2D vortex motion of air in zones of high and low pressure. If the pressure decreases, the angular velocity of rotation of the continuous medium increases, whereas if the pressure increases, the angular velocity fades. The lifting force is obtained due to the vortex movement of air in the form of a funnel. It is shown that the vortex force contains a vortex term of the Euler hydrodynamic equations with a relative factor equal to the velocity of the continuous medium squared divided by the sound velocity squared. To describe the motion of a continuous medium correctly it is necessary to replace the forces obtained by Euler with the forces obtained from the minimum of action in the equations of motion. It is concluded that vortex motions and turbulence are described by the obtained equations of motion, and not by the Navier–Stokes equations. Most likely, this is related to the Problem of the Millennium description of turbulence announced at the International Congress of Mathematics in 2000.


2001 ◽  
Vol 444 ◽  
pp. 383-407 ◽  
Author(s):  
ERCAN ERTURK ◽  
THOMAS C. CORKE

The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies was investigated using a spatial solution of the Navier–Stokes equations in vorticity/streamfunction form in parabolic coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998) in which the solution for the basic flow and linearized perturbation flow are solved separately. We primarily investigated the effect of frequency and angle of incidence (−180° [les ] α2 [les ] 180°) of the acoustic waves on the leading-edge receptivity. The results at α2 = 0° were found to be in quantitative agreement with those of Haddad & Corke (1998), and substantiated the Strouhal number scaling based on the nose radius. The results with sound waves at angles of incidence agreed qualitatively with the analysis of Hammerton & Kerschen (1996). These included a maximum receptivity at α2 = 90°, and an asymmetric variation in the receptivity with sound incidence angle, with minima at angles which were slightly less than α2 = 0° and α2 = 180°.


1992 ◽  
Vol 238 ◽  
pp. 487-507 ◽  
Author(s):  
Ernst W. Mayer ◽  
Kenneth G. Powell

Results are presented for a class of self-similar solutions of the steady, axisymmetric Navier–Stokes equations, representing the flows in slender (quasi-cylindrical) vortices. Effects of vortex strength, axial gradients and compressibility are studied. The presence of viscosity is shown to couple the parameters describing the core growth rate and the external flow field, and numerical solutions show that the presence of an axial pressure gradient has a strong effect on the axial flow in the core. For the viscous compressible vortex, near-zero densities and pressures and low temperatures are seen on the vortex axis as the strength of the vortex increases. Compressibility is also shown to have a significant influence upon the distribution of vorticity in the vortex core.


2004 ◽  
Vol 13 (01) ◽  
pp. 353-356 ◽  
Author(s):  
A. BARAN ◽  
Z. ŁOJEWSKI ◽  
K. SIEJA

We examine the fission barriers, mass parameters and spontaneous fission half lives of Fermium isotopes within the framework of the macroscopic-microscopic model with a δ-pairing interaction. Four different macroscopic models are applied and studied. The results are compared to experimental data and to the ones of the corresponding monopole pairing approach. The half lives obtained in the δ-pairing model are comparable with experimental data.


Sign in / Sign up

Export Citation Format

Share Document