scholarly journals Effect of inulin-type fructans on appetite in patients with type 2 diabetes: a randomised controlled crossover trial

2021 ◽  
Vol 10 ◽  
Author(s):  
Eline Birkeland ◽  
Sedegheh Gharagozlian ◽  
Kåre I. Birkeland ◽  
Oda K. S. Holm ◽  
Per M. Thorsby ◽  
...  

Abstract The aim of the study was to investigate the effect of prebiotic fibres on appetite-regulating hormones, subjective feeling of appetite and energy intake in subjects with type 2 diabetes. Data presented are secondary outcomes of a study investigating the effect of prebiotics on glucagon-like peptide-1 and glycaemic regulation. We conducted a randomised and placebo-controlled crossover trial to evaluate the effects of 16 g/d of inulin-type fructans or a control supplement (maltodextrin) for 6 weeks in randomised order, with a 4-week washout period in-between, on appetite in thirty-five men and women with type 2 diabetes. Data were collected at visits before and after each treatment: plasma concentration of the satiety-related peptides ghrelin and peptide YY (PYY) were assessed during a standardised mixed meal. The subjective sensation of appetite was evaluated in response to an ad libitum lunch by rating the visual analogue scale. Twenty-nine individuals (twelve women) were included in the analyses. Compared to control treatment, the prebiotics did not affect ghrelin (P =0⋅71) or the ratings of hunger (P = 0⋅62), satiety (P = 0⋅56), fullness (P = 0⋅73) or prospective food consumption (P = 0⋅98). Energy intake also did not differ between the treatments. However, the response of PYY increased significantly after the control treatment with mean (sem) 11⋅1 (4⋅3) pg/ml when compared to the prebiotics −0⋅3 (4⋅3) pg/ml (P = 0⋅013). We observed no effect of inulin-type fructans on appetite hormones, subjective feeling of appetite or energy intake in patients with type 2 diabetes.

BMJ ◽  
2021 ◽  
pp. m4573 ◽  
Author(s):  
Suetonia C Palmer ◽  
Britta Tendal ◽  
Reem A Mustafa ◽  
Per Olav Vandvik ◽  
Sheyu Li ◽  
...  

Abstract Objective To evaluate sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists in patients with type 2 diabetes at varying cardiovascular and renal risk. Design Network meta-analysis. Data sources Medline, Embase, and Cochrane CENTRAL up to 11 August 2020. Eligibility criteria for selecting studies Randomised controlled trials comparing SGLT-2 inhibitors or GLP-1 receptor agonists with placebo, standard care, or other glucose lowering treatment in adults with type 2 diabetes with follow up of 24 weeks or longer. Studies were screened independently by two reviewers for eligibility, extracted data, and assessed risk of bias. Main outcome measures Frequentist random effects network meta-analysis was carried out and GRADE (grading of recommendations assessment, development, and evaluation) used to assess evidence certainty. Results included estimated absolute effects of treatment per 1000 patients treated for five years for patients at very low risk (no cardiovascular risk factors), low risk (three or more cardiovascular risk factors), moderate risk (cardiovascular disease), high risk (chronic kidney disease), and very high risk (cardiovascular disease and kidney disease). A guideline panel provided oversight of the systematic review. Results 764 trials including 421 346 patients proved eligible. All results refer to the addition of SGLT-2 inhibitors and GLP-1 receptor agonists to existing diabetes treatment. Both classes of drugs lowered all cause mortality, cardiovascular mortality, non-fatal myocardial infarction, and kidney failure (high certainty evidence). Notable differences were found between the two agents: SGLT-2 inhibitors reduced mortality and admission to hospital for heart failure more than GLP-1 receptor agonists, and GLP-1 receptor agonists reduced non-fatal stroke more than SGLT-2 inhibitors (which appeared to have no effect). SGLT-2 inhibitors caused genital infection (high certainty), whereas GLP-1 receptor agonists might cause severe gastrointestinal events (low certainty). Low certainty evidence suggested that SGLT-2 inhibitors and GLP-1 receptor agonists might lower body weight. Little or no evidence was found for the effect of SGLT-2 inhibitors or GLP-1 receptor agonists on limb amputation, blindness, eye disease, neuropathic pain, or health related quality of life. The absolute benefits of these drugs vary substantially across patients from low to very high risk of cardiovascular and renal outcomes (eg, SGLT-2 inhibitors resulted in 5 to 48 fewer deaths in 1000 patients over five years; see interactive decision support tool ( https://magicevidence.org/match-it/200820dist/#!/ ) for all outcomes. Conclusions In patients with type 2 diabetes, SGLT-2 inhibitors and GLP-1 receptor agonists reduced cardiovascular and renal outcomes, with notable differences in benefits and harms. Absolute benefits are determined by individual risk profiles of patients, with clear implications for clinical practice, as reflected in the BMJ Rapid Recommendations directly informed by this systematic review. Systematic review registration PROSPERO CRD42019153180.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1962 ◽  
Author(s):  
Ryan Jalleh ◽  
Hung Pham ◽  
Chinmay S. Marathe ◽  
Tongzhi Wu ◽  
Madeline D. Buttfield ◽  
...  

Glucagon-like peptide-1 receptor agonists induce weight loss, which has been suggested to relate to the slowing of gastric emptying (GE). In health, energy intake (EI) is more strongly related to the content of the distal, than the total, stomach. We evaluated the effects of lixisenatide on GE, intragastric distribution, and subsequent EI in 15 healthy participants and 15 patients with type 2 diabetes (T2D). Participants ingested a 75-g glucose drink on two separate occasions, 30 min after lixisenatide (10 mcg) or placebo subcutaneously, in a randomised, double-blind, crossover design. GE and intragastric distribution were measured for 180 min followed by a buffet-style meal, where EI was quantified. Relationships of EI with total, proximal, and distal stomach content were assessed. In both groups, lixisenatide slowed GE markedly, with increased retention in both the proximal (p < 0.001) and distal (p < 0.001) stomach and decreased EI (p < 0.001). EI was not related to the content of the total or proximal stomach but inversely related to the distal stomach at 180 min in health on placebo (r = −0.58, p = 0.03) but not in T2D nor after lixisenatide in either group. In healthy and T2D participants, the reduction in EI by lixisenatide is unrelated to changes in GE/intragastric distribution, consistent with a centrally mediated effect.


2014 ◽  
Vol 11 (6) ◽  
pp. 419-430 ◽  
Author(s):  
Debashis Nandy ◽  
Christopher Johnson ◽  
Rita Basu ◽  
Michael Joyner ◽  
Jason Brett ◽  
...  

This single-centre, 12-week, double-blind, placebo-controlled trial assessed how the human glucagon-like-peptide 1 analogue liraglutide impacted endothelial function in adult patients (n = 49) with type 2 diabetes and no overt cardiovascular disease. Patients were randomized to liraglutide, placebo or glimepiride. At baseline and Week 12, venous occlusion plethysmography was used to measure forearm blood flow (FBF) in response to acetylcholine (ACh) and sodium nitroprusside (SNP) before and after l-NG-monomethyl arginine (L-NMMA) infusion. At Week 12, ACh-mediated FBF increased with liraglutide and decreased with placebo; however, the between-treatment difference was not significant ( p = 0.055). Inhibition of ACh-mediated FBF after L-NMMA infusion increased with liraglutide and decreased with placebo; this between-treatment difference was also not significant ( p = 0.149). No change in FBF was observed with SNP. Liraglutide did not significantly impact endothelium-dependent vasodilation after 12 weeks; however, additional investigations looking at the effect of liraglutide on endothelial function in alternative vasculature and during the postprandial period are warranted.


2020 ◽  
Vol 8 (1) ◽  
pp. e001076
Author(s):  
Kleopatra Alexiadou ◽  
Joyceline Cuenco ◽  
James Howard ◽  
Nicolai Jacob Wewer Albrechtsen ◽  
Ibiyemi Ilesanmi ◽  
...  

IntroductionHyperglucagonemia is a key pathophysiological driver of type 2 diabetes. Although Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for diabetes, it is presently unclear how surgery alters glucagon physiology. The aim of this study was to characterize the behavior of proglucagon-derived peptide (glucagon, glucagon-like peptide-1 (GLP-1), oxyntomodulin, glicentin) secretion after RYGB surgery.Research design and methodsProspective study of 19 patients with obesity and pre-diabetes/diabetes undergoing RYGB. We assessed the glucose, insulin, GLP-1, glucose-dependent insulinotropic peptide (GIP), oxyntomodulin, glicentin and glucagon responses to a mixed-meal test (MMT) before and 1, 3 and 12 months after surgery. Glucagon was measured using a Mercodia glucagon ELISA using the ‘Alternative’ improved specificity protocol, which was validated against a reference liquid chromatography combined with mass spectrometry method.ResultsAfter RYGB, there were early improvements in fasting glucose and glucose tolerance and the insulin response to MMT was accelerated and amplified, in parallel to significant increases in postprandial GLP-1, oxyntomodulin and glicentin secretion. There was a significant decrease in fasting glucagon levels at the later time points of 3 and 12 months after surgery. Glucagon was secreted in response to the MMT preoperatively and postoperatively in all patients and there was no significant change in this postprandial secretion. There was no significant change in GIP secretion.ConclusionsThere is a clear difference in the dynamics of secretion of proglucagon peptides after RYGB. The reduction in fasting glucagon secretion may be one of the mechanisms driving later improvements in glycemia after RYGB.Trial registration numberNCT01945840.


Sign in / Sign up

Export Citation Format

Share Document