scholarly journals No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016

2019 ◽  
Vol 65 (250) ◽  
pp. 270-278 ◽  
Author(s):  
SHER MUHAMMAD ◽  
LIDE TIAN ◽  
MARCUS NÜSSER

ABSTRACTAlthough glaciers in High Mountain Asia produce an enormous amount of water used by downstream populations, they remain poorly observed in the field. This study presents a geodetic mass balance of the glaciers in the Astore Basin (with differential GPS (dGPS) measurements on Harcho glacier) between 1999 and 2016. Changes near the terminus of Harcho glacier (below 3800 m a.s.l.) featured heterogeneous surface elevation changes, whereas the middle section shows the most negative changes. The surface elevation changes were positive above 4200 m a.s.l. The average annual mass balance was −0.08 ± 0.07 m w.e. a−1 derived from a dGPS and DEM comparison whereas Advanced Spaceborne Thermal Emission and Reflection Radiometer DEM-based results show a slightly positive, that is 0.03 ± 0.24 m w.e. a−1 in the same period. In contrast, the terminus indicates a substantial retreat of ~368 m (4.5 m a−1) between 1934 and 2016. The average mass balance of 19 glaciers (>2 km2) covering ~60% of the total glaciers in the Basin exhibit no net mass loss in the period of 2000−2016 and follow a pattern similar to adjacent Karakoram glaciers.

2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2010 ◽  
Vol 56 (195) ◽  
pp. 65-74 ◽  
Author(s):  
Yong Zhang ◽  
Koji Fujita ◽  
Shiyin Liu ◽  
Qiao Liu ◽  
Xin Wang

AbstractDigital elevation models (DEMs) of the ablation area of Hailuogou glacier, China, produced from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data obtained in 2009, differential GPS (DGPS) data surveyed in 2008 and aerial photographs acquired in 1966 and 1989 are differenced to estimate long- and short-term glacier surface elevation change (dh/dt). The mean dh/dt of the ablation area over 43 years (1966–2009) is −1.1 ± 0.4 m a−1. Since 1989 the thinning has accelerated significantly. Ice velocities measured by DGPS at 28 fixed stakes implanted in the ablation area increase with distance from the glacier terminus, ranging from 41.0 m a−1 approaching the glacier terminus to a maximum of 205.0 m a−1 at the base of an icefall. Our results reveal that the overall average ice velocity in the ablation area has undergone significant temporal variability over the past several decades. Changes in glacier surface elevation in the ablation area result from the combined effects of climate change and glacier dynamics, which are driven by different factors for different regions and periods.


2019 ◽  
Vol 11 (9) ◽  
pp. 1121 ◽  
Author(s):  
Małgorzata Błaszczyk ◽  
Dariusz Ignatiuk ◽  
Mariusz Grabiec ◽  
Leszek Kolondra ◽  
Michał Laska ◽  
...  

In this study, we assess the accuracy and precision of digital elevation models (DEM) retrieved from aerial photographs taken in 2011 and from Very High Resolution satellite images (WorldView-2 and Pléiades) from the period 2012–2017. Additionally, the accuracy of the freely available Strip product of ArcticDEM was verified. We use the DEMs to characterize geometry changes over Hansbreen and Hornbreen, two tidewater glaciers in southern Spitsbergen, Svalbard. The satellite-based DEMs from WorldView-2 and Pléiades stereo pairs were processed using the Rational Function Model (RFM) without and with one ground control point. The elevation quality of the DEMs over glacierized areas was validated with in situ data: static differential GPS survey of mass balance stakes and GPS kinematic data acquired during ground penetrating radar survey. Results demonstrate the usefulness of the analyzed sources of DEMs for estimation of the total geodetic mass balance of the Svalbard glaciers. DEM accuracy is sufficient to investigate glacier surface elevation changes above 1 m. Strips from the ArcticDEM are generally precise, but some of them showed gross errors and need to be handled with caution. The surface of Hansbreen and Hornbreen has been lowering in recent years. The average annual elevation changes for Hansbreen were more negative in the period 2015–2017 (−2.4 m a−1) than in the period 2011–2015 (−1.7 m a−1). The average annual elevation changes over the studied area of Hornbreen for the period 2012–2017 amounted to −1.6 m a−1. The geodetic mass balance for Hansbreen was more negative than the climatic mass balance estimated using the mass budget method, probably due to underestimation of the ice discharge. From 2011 to 2017, Hansbreen lost on average over 1% of its volume each year. Such a high rate of relative loss illustrates how fast these glaciers are responding to climate change.


2020 ◽  
Vol 66 (256) ◽  
pp. 313-328 ◽  
Author(s):  
Liss M. Andreassen ◽  
Hallgeir Elvehøy ◽  
Bjarne Kjøllmoen ◽  
Joaquín M. C. Belart

AbstractIn this paper, we give an overview of changes in area, length, surface elevation and mass balance of glaciers in mainland Norway since the 1960s. Frontal advances have been recorded in all regions except the northernmost glaciers in Troms and Finnmark (Storsteinsfjellbreen, Lyngen and Langfjordjøkelen). More than half of the observed glaciers, 27 of 49, had marked advances in the 1990s. The glaciological mass-balance values for the period 1962–2018, where 43 glaciers have been measured, show great inter-annual variability. The results reveal accelerated deficit since 2000, the most negative decade being 2001–2010. Some years with a positive mass balance (or less negative) after 2010s can be attributed to variations in large-scale atmospheric circulation. A surface elevation change and geodetic mass balance were calculated for a sample of 131 glaciers covering 817 km2 in the ‘1960s’ and 734 km2 in the ‘2010s’, giving an area reduction of 84 km2, or 10%. The sample covers many of the largest glaciers in Norway, and they had an overall change in surface elevation of −15.5 m for the ~50 year period. Converted to a geodetic mass balance this gives a mean mass balance of −0.27 ± 0.05 m w.e. a−1.


2016 ◽  
Vol 10 (6) ◽  
pp. 2941-2952 ◽  
Author(s):  
Andrea Fischer ◽  
Kay Helfricht ◽  
Martin Stocker-Waldhuber

Abstract. For Austrian glacier ski resorts, established in the 1970s and 1980s during a period of glacier advance, negative mass balances with resulting glacier area loss and decrease in surface elevation present an operational challenge. Glacier cover, snow farming, and technical snow production were introduced as adaptation measures based on studies on the effect of these measures on energy and mass balance. After a decade of the application of the various measures, we studied the transition from the proven short-term effects of the measures on mass balance to long-term effects on elevation changes. Based on lidar digital elevation models and differential GPS measurements, decadal surface elevation changes in 15 locations with mass balance management were compared to those without measures (apart from piste grooming) in five Tyrolean ski resorts on seven glaciers. The comparison of surface elevation changes presents clear local differences in mass change, and it shows the potential to retain local ice thickness over 1 decade. Locally up to 21.1 m ± 0.4 m of ice thickness was preserved on mass balance managed areas compared to non-maintained areas over a period of 9 years. In this period, mean annual thickness loss in 15 of the mass balance managed profiles is 0.54 ± 0.04 m yr−1 lower (−0.23 ± 0.04 m yr−1on average) than in the respective reference areas (−0.78 ± 0.04 m yr−1). At two of these profiles the surface elevation was preserved altogether, which is promising for a sustainable maintenance of the infrastructure at glacier ski resorts. In general the results demonstrate the high potential of the combination of mass balance management by snow production and glacier cover, not only in the short term but also for multi-year application to maintain the skiing infrastructure.


2016 ◽  
Vol 62 (236) ◽  
pp. 1083-1092 ◽  
Author(s):  
SHUN TSUTAKI ◽  
SHIN SUGIYAMA ◽  
DAIKI SAKAKIBARA ◽  
TAKANOBU SAWAGAKI

ABSTRACTTo quantify recent thinning of marine-terminating outlet glaciers in northwestern Greenland, we carried out field and satellite observations near the terminus of Bowdoin Glacier. These data were used to compute the change in surface elevation from 2007 to 2013 and this rate of thinning was then compared with that of the adjacent land-terminating Tugto Glacier. Comparing DEMs of 2007 and 2010 shows that Bowdoin Glacier is thinning more rapidly (4.1 ± 0.3 m a−1) than Tugto Glacier (2.8 ± 0.3 m a−1). The observed negative surface mass-balance accounts for <40% of the elevation change of Bowdoin Glacier, meaning that the thinning of Bowdoin Glacier cannot be attributable to surface melting alone. The ice speed of Bowdoin Glacier increases down-glacier, reaching 457 m a−1 near the calving front. This flow regime causes longitudinal stretching and vertical compression at a rate of −0.04 a−1. It is likely that this dynamically-controlled thinning has been enhanced by the acceleration of the glacier since 2000. Our measurements indicate that ice dynamics indeed play a predominant role in the rapid thinning of Bowdoin Glacier.


2018 ◽  
Vol 64 (248) ◽  
pp. 917-931 ◽  
Author(s):  
RUBÉN BASANTES-SERRANO ◽  
ANTOINE RABATEL ◽  
CHRISTIAN VINCENT ◽  
PASCAL SIRGUEY

ABSTRACTUnderstanding the effects of climate on glaciers requires precise estimates of ice volume change over several decades. This is achieved by the geodetic mass balance computed by two means: (1) the digital elevation model (DEM) comparison (SeqDEM) allows measurements over the entire glacier, however the low contrast over glacierized areas is an issue for the DEM generation through the photogrammetric techniques and (2) the profiling method (SePM) is a faster alternative but fails to capture the spatial variability of elevation changes. We present a new framework (SSD) that relies upon the spatial variability of the elevation change to densify a sampling network to optimize the surface-elevation change quantification. Our method was tested in two small glaciers over different periods. We conclude that the SePM overestimates the elevation change by ~20% with a mean difference of ~1.00 m (root mean square error (RMSE) = ~3.00 m) compared with results from the SeqDEM method. A variogram analysis of the elevation changes showed a mean difference of <0.10 m (RMSE = ~2.40 m) with SSD approach. A final assessment on the largest glacier in the French Alps confirms the high potential of our method to compute the geodetic mass balance, without going through the generation of a full-density DEM, but with a similar accuracy than the SeqDEM approach.


2020 ◽  
Vol 66 (256) ◽  
pp. 175-187 ◽  
Author(s):  
David R. Rounce ◽  
Tushar Khurana ◽  
Margaret B. Short ◽  
Regine Hock ◽  
David E. Shean ◽  
...  

AbstractThe response of glaciers to climate change has major implications for sea-level change and water resources around the globe. Large-scale glacier evolution models are used to project glacier runoff and mass loss, but are constrained by limited observations, which result in models being over-parameterized. Recent systematic geodetic mass-balance observations provide an opportunity to improve the calibration of glacier evolution models. In this study, we develop a calibration scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance observations, which enable us to quantify model parameter uncertainty. The Bayesian model is applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods. After 10,000 steps, the chains generate a sufficient number of independent samples to estimate the properties of the model parameters from the joint posterior distribution. Their spatial distribution shows a clear orographic effect indicating the resolution of climate data is too coarse to resolve temperature and precipitation at high altitudes. Given the glacier evolution model is over-parameterized, particular attention is given to identifiability and the need for future work to integrate additional observations in order to better constrain the plausible sets of model parameters.


2020 ◽  
Author(s):  
Qinghua Ye ◽  
Wei Nie ◽  
Yimin Chen ◽  
Gang Li ◽  
lide Tian ◽  
...  

&lt;p&gt;Glaciers in the central Himalayas are important water resources for the downstream habitants, and accelerating melting of the high mountain glaciers speed up with continuous warming. We summerized the geodetic glacier surface elevation changes (Dh) by 6 data sets at different time periods during 1974-2016 in RongbukCatchment(RC) on the northern slope of Mt. Qomolangma (Mt. Everest) in the Central Himalayas. The result showed that glacier Dh varied with altitude and time, from -0.29 &amp;#177; 0.03m a&lt;sup&gt;-1&lt;/sup&gt; in 1974-2000, to -0.47 &amp;#177;0.24 m a&lt;sup&gt;-1&lt;/sup&gt; in 1974-2006,and -0.48 &amp;#177;0.16 m a&lt;sup&gt;-1&lt;/sup&gt; in 1974-2012. Dh increased to -0.60 &amp;#177; 0.20 m a&lt;sup&gt;-1&lt;/sup&gt; in 2000-2012, then decreased to-0.46 &amp;#177; 0.24 m a&lt;sup&gt;-1&lt;/sup&gt; in 2000-2014, and by -0.49 &amp;#177; 0.08 m a&lt;sup&gt;-1&lt;/sup&gt; in 2000-2016, showing a diverse rate being up - down- a little up. However, it generally presented a similar glacier thinning rate by -0.46~-0.49 m a&lt;sup&gt;-1&lt;/sup&gt; in the last four decades since 1970s in RC according to Dh&lt;sub&gt;1974-2006&lt;/sub&gt;, Dh&lt;sub&gt;1974-2012&lt;/sub&gt;, Dh&lt;sub&gt;2000-2014&lt;/sub&gt;, and Dh&lt;sub&gt;2000-2016&lt;/sub&gt;. Local meteorological observations revealed that, to a first order, the glacier thinning rate was kept the same pace with the number of annual melting days (MD). In spite of the obviously arising summer air temperature (T&lt;sub&gt;S&lt;/sub&gt;) in 2000-2014, a slowdown glacier melting rate by -391 mm w.e.a&lt;sup&gt;-1&lt;/sup&gt; occurred in 2000-2014 because of less melting days with more precipitation and less annual mean temperature(T&lt;sub&gt;m&lt;/sub&gt;). It shows that MD is another important indicator and controlling factor to evaluate or to estimate glacier melting trend, especially in hydrological or climate modeling.&lt;/p&gt;


2015 ◽  
Vol 9 (2) ◽  
pp. 525-540 ◽  
Author(s):  
M. Fischer ◽  
M. Huss ◽  
M. Hoelzle

Abstract. Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is −0.62 ± 0.07 m w.e. yr−1 for the entire Swiss Alps over the reference period 1980–2010. For the main hydrological catchments, it ranges from −0.52 to −1.07 m w.e. yr−1. The overall volume loss calculated from the DEM differencing is −22.51 ± 1.76 km3.


Sign in / Sign up

Export Citation Format

Share Document