scholarly journals The one-way speed of light and the Milne universe

Author(s):  
Geraint F. Lewis ◽  
Luke A. Barnes

Abstract In Einstein’s special theory of relativity, all observers measure the speed of light, c, to be the same. However, this refers to the round-trip speed, where a clock at the origin times the outward and return trip of light reflecting off a distant mirror. Measuring the one-way speed of light is fraught with issues of clock synchronisation, and, as long as the average speed of light remains c, the speeds on the outward and return legs could be different. One objection to this anisotropic speed of light is that views of the distant universe would be different in different directions, especially with regard to the ages of observed objects and the smoothness of the Cosmic Microwave Background. In this paper, we explore this in the Milne universe, the limiting case of a Friedmann–Robertson–Walker universe containing no matter, radiation, or dark energy. Given that this universe is empty, it can be mapped onto flat Minkowski space-time and so can be explored in terms of the one-way speed of light. The conclusion is that the presence of an anisotropic speed of light leads to anisotropic time dilation effects, and hence observers in the Milne universe would be presented with an isotropic view of the distant cosmos.

2021 ◽  
Vol 11 (3) ◽  
pp. 43-49
Author(s):  
Hamdoon A. Khan ◽  

With the consideration of the light which carries the photon particles, the Lorentz transformation was constructed with an impressive mathematical approach. But the generalization of that equation for all the velocities of the universe is direct enforcement on other things not to travel faster than light. It has created serious issues in every scientific research that was done in the last century based on the special theory of relativity. This paper replaces the velocity of light with some other velocities and shows us the possible consequences and highlights the issues of special relativity. If I travel through my past or future and was able to see another me there, who would be the real Hamdoon I or the one I see there in the past or future! If the real one is only me, the one I saw, is not me, so, I could not travel through my or someone else's past or future. Therefore, no one can travel through time. If both of us are the same, can the key of personal identity be duplicated or be separated into two or more parts? These are some of the fundamental philosophical arguments that annihilate the concept of time travel which is one of the sequels of special relativity.


2020 ◽  
Vol 15 ◽  
pp. 9-14
Author(s):  
Sergey G. Fedosin

In the framework of the special theory of relativity, elementary formulas are used to derive the formula for determining the relativistic angular momentum of a rotating ideal uniform ball. The moment of inertia of such a ball turns out to be a nonlinear function of the angular velocity of rotation. Application of this formula to the neutron star PSR J1614-2230 shows that due to relativistic corrections the angular momentum of the star increases tenfold as compared to the nonrelativistic formula. For the proton and neutron star PSR J1748-2446ad the velocities of their surface’s motion are calculated, which reach the values of the order of 30% and 19% of the speed of light, respectively. Using the formula for the relativistic angular momentum of a uniform ball, it is easy to obtain the formula for the angular momentum of a thin spherical shell depending on its thickness, radius, mass density, and angular velocity of rotation. As a result, considering a spherical body consisting of a set of such shells it becomes possible to accurately determine its angular momentum as the sum of the angular momenta of all the body’s shells. Two expressions are provided for the maximum possible angular momentum of the ball based on the rotation of the ball’s surface at the speed of light and based on the condition of integrity of the gravitationally bound body at the balance of the gravitational and centripetal forces. Comparison with the results of the general theory of relativity shows the difference in angular momentum of the order of 25% for an extremal Kerr black hole.


2021 ◽  
Author(s):  
Sebastin Patrick Asokan

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper also proves that Lorentz Transformation has failed in its attempt to do the impossible task of establishing t' ≠ t to explain the constancy of the speed of light in all inertial frames without contradicting the interchangeability of frames demanded by the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


Author(s):  
Geoff Cottrell

By the beginning of the twentieth century, our understanding of matter was completely transformed by the great discoveries of electromagnetism and relativity. ‘Energy, mass, and light’ outlines Einstein’s special theory of relativity of 1905, which describes what happens when objects move at speeds close to the speed of light. The theory transformed our understanding of the nature of space and time, and matter through the equivalence of mass and energy. In 1916, Einstein extended the theory to include gravity in the general theory of relativity, which revealed that matter affects space by curving space around it.


2019 ◽  
Vol 32 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Gianfranco Spavieri ◽  
Espen Gaarder Haug

We consider a thought experiment, equivalent to the Sagnac effect, where a light signal performs a round trip over a closed path. If special relativity (SR) adopts Einstein synchronization, the result of the experiment shows that the local light speed cannot be c in every section of the closed path. No inconsistencies are found when adopting absolute synchronization. Since Einstein and absolute synchronizations can be discriminated, the conventionality of the one-way speed of light holds no longer. Thus, as sustained by specialists, it might be a viable formulation of SR that reinstates the conservation of simultaneity, even though it allows for relativistic effects, such as time dilation. Such an approach may lead to the discovery of new effects and a better understanding of relativistic theories.


2020 ◽  
Vol 33 (2) ◽  
pp. 211-215 ◽  
Author(s):  
Shukri Klinaku

Is the special theory of relativity (STR) a “simple” or “tricky” theory? They who think that it is a simple theory say (i) that its postulates are simple, that Nature is such, (ii) that the mathematics of STR is perfect, and (iii) that experiments support it. I consider its two postulates to be very true, whereas the mathematics of the STR has a shortcoming, and, as for the experiments, the question must be posed: which theory do they support best? The problem for STR lies in the transition from its postulates to its basic equations, i.e., Lorentz transformation and the velocity addition formula. The passage from the principle of relativity and the constancy of the speed of light to the basic equations of the STR is affected by four fundamental errors—three physical and one mathematical. Continuous attempts to reconcile these latent mistakes have made STR increasingly tricky. As a result, it is in a similar situation to Ptolemy's geocentric model after “improvements” thereto by Tycho Brahe. However, the “Copernican solution” for relative motion—offered by extended Galilean relativity—is very simple and effective.


Author(s):  
Grit Kalies

For more than one hundred years, scientists dispute the correct interpretation of Lorentz transformations within the framework of the special theory of relativity of Albert Einstein. On the one hand, the changes in length, time and mass with increasing velocity are interpreted as apparent due to the observer dependence within special relativity. On the other hand, real changes are described corresponding to the experimental evidence of mass increase in particle accelerators or of clock delay. This ambiguity is accompanied by an ongoing controversy about valid Lorentz-transformed thermodynamic quantities such as entropy, pressure and temperature. In this paper is shown that the interpretation problem of the Lorentz transformations is genuinely anchored within the postulates of special relativity and can be solved on the basis of the thermodynamic approach of matter-energy equivalence, i.e. an energetic distinction between matter and mass. It is suggested that the velocity-dependent changes in state quantities are real in each case, in full agreement with the experimental evidence.


2021 ◽  
Author(s):  
SEBASTIN PATRICK ASOKAN

Abstract This paper shows that from the fact that the same Reality is perceived differently by the observers in different inertial frames, we can draw a simple and straightforward explanation for the constancy of light's speed in all inertial frames without any need for bringing in paradoxical Lorentz Transformation. This paper shows that the premise that each inertial frame has its unique time, which Lorentz Transformation introduced to explain the constancy of the speed of light in all inertial frames is incompatible with the interchangeability of the frames, an essential requisite of the First Postulate of the Special Theory of Relativity. This paper also points out the misconceptions regarding the claimed experimental verifications of Lorentz Transformation's predictions in the Hafele–Keating experiment and μ meson experiment. This paper hints at the possibility of attributing the observed slowing down of fast-moving clocks to the Relativistic Variation of Mass with Velocity instead of Time Dilation. This paper concludes that Einstein's Special Theory Relativity can stand on its own merits without Lorentz Transformation.


Sign in / Sign up

Export Citation Format

Share Document