Radiocarbon Pretreatment Comparisons of Bald Cypress (Taxodium Distichum) wood samples from a massive buried deposit on the Georgia Coast, USA

Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1755-1763 ◽  
Author(s):  
Katharine G Napora ◽  
Alexander Cherkinsky ◽  
Robert J Speakman ◽  
Victor D Thompson ◽  
Robert Horan ◽  
...  

ABSTRACTWe sampled individual growth rings from three ancient remnant bald cypress (Taxodium distichum) trees from a massive buried deposit at the mouth of the Altamaha River on the Georgia Coast to determine the best technique for radiocarbon (14C) dating pretreatment. The results of our comparison of traditional ABA pretreatment and holocellulose and α-cellulose fractions show no significant differences among the pretreatments (<1 sigma) thereby suggesting that ABA pretreatment will prove sufficient for the development of a high-resolution 14C tree-ring chronology based on these ancient bald cypresses which will indicate whether the U.S. Southeast is subject to a regional radiocarbon offset.

Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S51-S59
Author(s):  
Charlotte L. Pearson ◽  
Tomasz Ważny ◽  
Peter I. Kuniholm ◽  
Katarina Botić ◽  
Aleksandar Durman ◽  
...  

A total of 272 oak (Quercussp.) samples have been collected from large subfossil trees dredged from sediment deposited by the Sava and various tributary rivers in the Zagreb region of northwestern Croatia, and in northern Bosnia and Herzegovina. Measurement series of tree-ring widths from these samples produced 12 groups, totaling 3456 years of floating tree-ring chronologies spread through the last ca. 8000 years. This work represents the first step in creating a new, high-resolution resource for dating and paleoenvironmental reconstruction in the Balkan region and potentially a means to bridge between the floating tree-ring chronologies of the wider Mediterranean region and the continuous long chronologies from central Europe.


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 2029-2031
Author(s):  
Katharine G Napora ◽  
Alexander Cherkinsky ◽  
Robert J Speakman ◽  
Victor D Thompson ◽  
Robert Horan ◽  
...  

Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1297-1303 ◽  
Author(s):  
Irina Panyushkina ◽  
Fedor Grigoriev ◽  
Todd Lange ◽  
Nursan Alimbay

This study employs tree-ring crossdating and radiocarbon measurements to determine the precise calendar age of the Bes-Shatyr Saka necropolis (43°47′N, 81°21′E) built for wealthy tribe leaders in the Ili River Valley (Semirechiye), southern Kazakhstan. We developed a 218-yr tree-ring chronology and a highly resolved sequence of14C from timbers of Bes-Shatyr kurgan #3. A 4-decadal-point14C wiggle dates the Bes-Shatyr necropolis to 600 cal BC. A 47-yr range of cutting dates adjusted the kurgan date to ∼550 BC. This is the first result of high-resolution14C dating produced for the Saka burials in the Semirechiye. The collective dating of Bes-Shatyr indicates the early appearance of the Saka necropolis in the Semirechiye eastern margins of the Saka dispersal. However, the date is a couple of centuries younger than previously suggested by single14C dates. It is likely that the Shilbiyr sanctuary (location of the Bes-Shatyr) became a strategic and sacral place for the Saka leadership in the Semirechiye long before 550 BC. Another prominent feature of the Semirechiye burial landscape, the Issyk necropolis enclosing the Golden Warrior tomb, appeared a few centuries later according to14C dating reported by other investigators. This study contributes to the Iron Age chronology of Inner Asia, demonstrating successful results of14C calibration within the Hallstatt Plateau of the14C calibration curve. It appears that the wide range of calibrated dates for the Saka occurrences in Kazakhstan (from 800 BC to AD 350) is the result of the calibration curve constraints around the middle of the 1st millennium BC.


2004 ◽  
Vol 155 (6) ◽  
pp. 233-237
Author(s):  
Klaus Felix Kaiser ◽  
Matthias Schaub

A comparison of different high-resolution archives, such as tree rings, ice cores and marine varves show high degrees of similarity and reveal significant hemispheric climatic events (Older Dryas, Gerzensee Deviation, onset of Younger Dryas). Even the eruption of the Laachersee volcano (Eifel, Germany) 13 070 years ago is recorded synchronously in all of these archives. Trees from the Zurich area extend the absolute tree-ring chronology back to 12 449 years BP. This extension is relevant for quaternary research as well as for calibrating the 14C curve and other archives. The recent findings from the Uetliberg may provide further progress in filling the existing gaps in the Lateglacial tree-ring chronologies.


Radiocarbon ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. S51-S59 ◽  
Author(s):  
Charlotte L. Pearson ◽  
Tomasz Ważny ◽  
Peter I. Kuniholm ◽  
Katarina Botić ◽  
Aleksandar Durman ◽  
...  

A total of 272 oak (Quercussp.) samples have been collected from large subfossil trees dredged from sediment deposited by the Sava and various tributary rivers in the Zagreb region of northwestern Croatia, and in northern Bosnia and Herzegovina. Measurement series of tree-ring widths from these samples produced 12 groups, totaling 3456 years of floating tree-ring chronologies spread through the last ca. 8000 years. This work represents the first step in creating a new, high-resolution resource for dating and paleoenvironmental reconstruction in the Balkan region and potentially a means to bridge between the floating tree-ring chronologies of the wider Mediterranean region and the continuous long chronologies from central Europe.


2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Iriwi Louisa S. Sinon

<p><em>Study dendrochronology or tree-ring dating is defined as the study of chronological sequence of annual growth rings in trees. Teak (Tectona grandis) is one of various tree species that has been identified for the use of tree-ring studies in tropical regions. Teak is found to be suitable for dendrochronology as it is long-lived and develops defined annual growth rings. In Java, teak cans growth naturally or intensively in plantation. The two silviculture conditions will give different sensitivity on climate effect. Therefore, the effect of silviculturer will on natural teak and plantation teak in Saradan, Madiun, and East Java. As a part of the study, ten core samples from natural- growth teak were measured. The samples of growth rings is spanned from 1832 – 2004. Using the COFECHA program, the correlation of the samples (r) was found to be 0.44 point, which is satisfactory to the standard used in dendrochronology. Thus, from this study it can be concluded that natural teak could still be used in dendrochronology, although the sensitivity are not as high as plantation teak. </em></p>


Radiocarbon ◽  
2020 ◽  
pp. 1-10
Author(s):  
Marek Krąpiec ◽  
Andrzej Rakowski ◽  
Jacek Pawlyta ◽  
Damian Wiktorowski ◽  
Monika Bolka

ABSTRACT Radiocarbon (14C) analyses are commonly used to determine the absolute age of floating tree-ring chronologies. At best, with the wiggle-matching method, a precision of 10 years could be achieved. For the early Middle Ages, this situation has been markedly improved by the discovery of rapid changes in atmospheric 14C concentrations in tree-rings dated to 774/775 and 993/994 AD. These high-resolution changes can be used to secure other floating tree-ring sequences to within 1-year accuracy. While a number of studies have used the 774 even to secure floating tree-ring sequences, the less abrupt 993 event has not been so well utilized. This study dates a floating pine chronology from Ujście in Wielkopolska (Greater Poland) (NW Poland), which covers the 10th century period and is critical for studies on the beginning of the Polish State to the calendar years 859–1085 AD using the changes in single year radiocarbon around 993/4 AD.


Radiocarbon ◽  
2019 ◽  
Vol 62 (4) ◽  
pp. 891-899 ◽  
Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Ulf Büntgen ◽  
Michael Friedrich ◽  
Ronny Friedrich ◽  
...  

ABSTRACTAdvances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zürich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval.


Sign in / Sign up

Export Citation Format

Share Document