The behaviour of circular synthetic jets in a laminar boundary layer

2005 ◽  
Vol 109 (1100) ◽  
pp. 461-470 ◽  
Author(s):  
S. Zhong ◽  
F. Millet ◽  
N. J. Wood

Abstract Dye flow visualisation of circular synthetic jets was carried out in laminar boundary layers developing over a flat plate at a range of actuator operating conditions and freestream velocities of 0·05 and 0·1ms–1. The purpose of this work was to study the interaction of synthetic jets with the boundary layer and the nature of vortical structures produced as a result of this interaction. The effects of Reynolds number (Re), velocity ratio (VR ) and Strouhal number (St) on the behaviour of synthetic jets were studied. At low Re and VR , the vortical structures produced by synthetic jets appear as highly stretched hairpin vortices attached to the wall. At intermediate Re and VR , these structures roll up into vortex rings which experience a considerable amount of tilting and stretching as they enter the boundary layer. These vortex rings will eventually propagate outside the boundary layer hence the influence of the synthetic jets on the near wall flow will be confined in the near field of the jet exit. At high Re and VR , the vortex rings appear to experience a certain amount of tilting but no obvious stretching. They penetrate the edge of the boundary layer quickly, producing very limited impact on the near wall flow. Hence it is believed that the hairpin vortices produced at low Re and VR are likely to be the desirable structures for effective flow separation control. In this paper, a vortex model was also described to explain the mechanism of vortex tilting.

2019 ◽  
Vol 865 ◽  
pp. 928-962 ◽  
Author(s):  
Haohua Zong ◽  
Marios Kotsonis

Plasma synthetic jet actuators (PSJAs) are particularly suited for high-Reynolds-number, high-speed flow control due to their unique capability of generating supersonic pulsed jets at high frequency (${>}5$  kHz). Different from conventional synthetic jets driven by oscillating piezoelectric diaphragms, the exit-velocity variation of plasma synthetic jets (PSJs) within one period is significantly asymmetric, with ingestion being relatively weaker (less than $20~\text{m}~\text{s}^{-1}$) and longer than ejection. In this study, high-speed phase-locked particle image velocimetry is employed to investigate the interaction between PSJAs (round exit orifice, diameter 2 mm) and a turbulent boundary layer at constant Strouhal number (0.02) and increasing mean velocity ratio ($r$, defined as the ratio of the time-mean velocity over the ejection phase to the free-stream velocity). Two distinct operational regimes are identified for all the tested cases, separated by a transition velocity ratio, lying between $r=0.7$ and $r=1.0$. At large velocity and stroke ratios (first regime, representative case $r=1.6$), vortex rings are followed by a trailing jet column and tilt downstream initially. This downstream tilting is transformed into upstream tilting after the pinch-off of the trailing jet column. The moment of this transformation relative to the discharge advances with decreasing velocity ratio. Shear-layer vortices (SVs) and a hanging vortex pair (HVP) are identified in the windward and leeward sides of the jet body, respectively. The HVP is initially erect and evolves into an inclined primary counter-rotating vortex pair ($p$-CVP) which branches from the middle of the front vortex ring and extends to the near-wall region. The two legs of the $p$-CVP are bridged by SVs, and a secondary counter-rotating vortex pair ($s$-CVP) is induced underneath these two legs. At low velocity and stroke ratios (second regime, representative case $r=0.7$), the trailing jet column and $p$-CVP are absent. Vortex rings always tilt upstream, and the pitching angle increases monotonically with time. An $s$-CVP in the near-wall region is induced directly by the two longitudinal edges of the ring. Inspection of spanwise planes ($yz$-plane) reveals that boundary-layer energization is realized by the downwash effect of either vortex rings or $p$-CVP. In addition, in the streamwise symmetry plane, the increasing wall shear stress is attributed to the removal of low-energy flow by ingestion. The downwash effect of the $s$-CVP does not benefit boundary-layer energization, as the flow swept to the wall is of low energy.


2008 ◽  
Vol 604 ◽  
pp. 389-409 ◽  
Author(s):  
RAJES SAU ◽  
KRISHNAN MAHESH

Direct numerical simulation is used to study the effect of crossflow on the dynamics, entrainment and mixing characteristics of vortex rings issuing from a circular nozzle. Three distinct regimes exist, depending on the velocity ratio (ratio of the average nozzle exit velocity to free-stream crossflow velocity) and stroke ratio (ratio of stroke length to nozzle exit diameter). Coherent vortex rings are not obtained at velocity ratios below approximately 2. At these low velocity ratios, the vorticity in the crossflow boundary layer inhibits roll-up of the nozzle boundary layer at the leading edge. As a result, a hairpin vortex forms instead of a vortex ring. For large stroke ratios and velocity ratio below 2, a series of hairpin vortices is shed downstream. The shedding is quite periodic for very low Reynolds numbers. For velocity ratios above 2, two regimes are obtained depending upon the stroke ratio. Lower stroke ratios yield a coherent asymmetric vortex ring, while higher stroke ratios yield an asymmetric vortex ring accompanied by a trailing column of vorticity. These two regimes are separated by a transition stroke ratio whose value decreases with decreasing velocity ratio. For very high values of the velocity ratio, the transition stroke ratio approaches the ‘formation number’. In the absence of trailing vorticity, the vortex ring tilts towards the upstream direction, while the presence of a trailing column causes it to tilt downstream. This behaviour is explained. In the absence of crossflow, the trailing column is not very effective at entrainment, and is best avoided for optimal mixing and entrainment. However, in the presence of crossflow, the trailing column is found to contribute significantly to the overall mixing and entrainment. The trailing column interacts with the crossflow to generate a region of high pressure downstream of the nozzle that drives crossflow fluid towards the vortex ring. There is an optimal length of the trailing column for maximum downstream entrainment. A classification map which categorizes the different regimes is developed.


2005 ◽  
Vol 109 (1093) ◽  
pp. 147-155 ◽  
Author(s):  
S. Zhong ◽  
L. Garcillan ◽  
N. J Wood

Abstract Dye visualisation of both inclined synthetic jets and skewed synthetic jets was undertaken in a cross-flow experiment and the results were compared with those of normal synthetic jets. The process of vortex roll-up near the orifice exit and how the structure develops and interacts with the cross-flow as it propagates downstream was investigated so as to obtain an understanding of the effect of orifice orientation on the behaviour of synthetic jets. The effects of varying Reynolds number, velocity ratio and Strouhal number due to changes in diaphragm displacements and freestream velocities on the characteristics of synthetic jets were also examined. It is observed that in comparison to the normal jets vortical structures produced by both inclined and skewed jets tend to stay closer to the near wall region where maximum flow control effect is required. In both cases, at a relatively low Reynolds number and velocity ratio the active structures produced by the synthetic jet appear to be hairpin vortices which turn into vortex rings that migrate away from the wall as the Reynolds number and velocity ratio increase. These hairpin vortices are persistent in the near wall region hence are believed to be desirable structures for delaying flow separation.


2001 ◽  
Vol 432 ◽  
pp. 127-166 ◽  
Author(s):  
K. W. BRINCKMAN ◽  
J. D. A. WALKER

Unsteady separation processes at large finite, Reynolds number, Re, are considered, as well as the possible relation to existing descriptions of boundary-layer separation in the limit Re → ∞. The model problem is a fundamental vortex-driven three-dimensional flow, believed to be relevant to bursting near the wall in a turbulent boundary layer. Bursting is known to be associated with streamwise vortex motion, but the vortex/wall interactions that drive the near-wall flow toward breakdown have not yet been fully identified. Here, a simulation of symmetric counter-rotating vortices is used to assess the influence of sustained pumping action on the development of a viscous wall layer. The calculated solutions describe a three-dimensional flow at finite Re that is independent of the streamwise coordinate and consists of a crossflow plane motion, with a developing streamwise flow. The unsteady problem is constructed to mimic a typical cycle in turbulent wall layers and numerical solutions are obtained over a range of Re. Recirculating eddies develop rapidly in the near-wall flow, but these eddies are eventually bisected by alleyways which open up from the external flow region to the wall. At sufficiently high Re, an oscillation was found to develop in the streamwise vorticity field near the alleyways with a concurrent evolution of a local spiky behaviour in the wall shear. Above a critical value of Re, the oscillation grows rapidly in amplitude and eventually penetrates the external flow field, suggesting the onset of an unstable wall-layer breakdown. Local zones of severely retarded streamwise velocity are computed which are reminiscent of the low-speed streaks commonly observed in turbulent boundary layers. A number of other features also bear a resemblance to observed coherent structure in the turbulent wall layer.


2017 ◽  
Vol 829 ◽  
pp. 751-779 ◽  
Author(s):  
Jinyul Hwang ◽  
Hyung Jin Sung

Direct numerical simulation data of a turbulent boundary layer ($Re_{\unicode[STIX]{x1D70F}}=1000$) were used to investigate the large-scale influences on the vortical structures that contribute to the local skin friction. The amplitudes of the streamwise and wall-normal swirling strengths ($\unicode[STIX]{x1D706}_{x}$and$\unicode[STIX]{x1D706}_{y}$) were conditionally sampled by measuring the large-scale streamwise velocity fluctuations ($u_{l}$). In the near-wall region, the amplitudes of$\unicode[STIX]{x1D706}_{x}$and$\unicode[STIX]{x1D706}_{y}$decreased under negative$u_{l}$rather than under positive$u_{l}$. This behaviour arose from the spanwise motions within the footprints of the large-scale low-speed ($u_{l}<0$) and high-speed structures ($u_{l}>0$). The intense spanwise motions under the footprint of positive$u_{l}$noticeably strengthened the small-scale spanwise velocity fluctuations ($w_{s}$) below the centre of the near-wall vortical structures as compared to$w_{s}$within the footprint of negative$u_{l}$. The streamwise and wall-normal components were attenuated or amplified around the modulated vortical motions, which in turn led to the dependence of the swirling strength on the$u_{l}$event. We quantified the contribution of the modulated vortical motions$\langle -w\unicode[STIX]{x1D714}_{y}\rangle$, which were related to a change-of-scale effect due to the vortex-stretching force, to the local skin friction. In the near-wall region, intense values of$\langle -w\unicode[STIX]{x1D714}_{y}\rangle$were observed for positive$u_{l}$. By contrast, these values were low for negative$u_{l}$, in connection with the amplification of$w_{s}$and$\unicode[STIX]{x1D706}_{y}$by the strong spanwise motions of the positive$u_{l}$. The resultant skin friction induced by the amplified vortical motions within$u_{l}^{+}>2$was responsible for 15 % of the total skin friction generated by the change-of-scale effect. Finally, we applied this analysis to a drag-reduced flow and found that the amplified vortical motions within the footprint of positive$u_{l}$were markedly diminished, which ultimately contributed to the total drag reduction.


2008 ◽  
Vol 613 ◽  
pp. 205-231 ◽  
Author(s):  
SERGIO PIROZZOLI ◽  
MATTEO BERNARDINI ◽  
FRANCESCO GRASSO

A spatially developing supersonic boundary layer at Mach 2 is analysed by means of direct numerical simulation of the compressible Navier--Stokes equations, with the objective of quantitatively characterizing the coherent vortical structures. The study shows structural similarities with the incompressible case. In particular, the inner layer is mainly populated by quasi-streamwise vortices, while in the outer layer we observe a large variety of structures, including hairpin vortices and hairpin packets. The characteristic properties of the educed structures are found to be nearly uniform throughout the outer layer, and to be weakly affected by the local vortex orientation. In the outer layer, typical core radii vary in the range of 5–6 dissipative length scales, and the associated circulation is approximately constant, and of the order of 180 wall units. The statistical properties of the vortical structures in the outer layer are similar to those of an ensemble of non-interacting closed-loop vortices with a nearly planar head inclined at an angle of approximately 20° with respect to the wall, and with an overall size of approximately 30 dissipative length scales.


2016 ◽  
Vol 795 ◽  
pp. 611-633 ◽  
Author(s):  
Y. Jodai ◽  
G. E. Elsinga

Time-resolved tomographic particle image velocimetry experiments show that new hairpin vortices are generated within a fully developed and unperturbed turbulent boundary layer. The measurements are taken at a Reynolds number based on the momentum thickness of 2038, and cover the near-wall region below $y^{+}=140$, where $y^{+}$ is the wall-normal distance in wall units. Instantaneous visualizations of the flow reveal near-wall low-speed streaks with associated quasi-streamwise vortices, retrograde inverted arch vortices, hairpin vortices and hairpin packets. The hairpin heads are observed as close to the wall as $y^{+}=30$. Examples of hairpin packet evolution reveal the development of new hairpin vortices, which are created upstream and close to the wall in a manner consistent with the auto-generation model (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). The development of the new hairpin appears to be initiated by an approaching sweep event, which perturbs the shear layer associated with the initial packet. The shear layer rolls up, thereby forming the new hairpin head. The head subsequently connects to existing streamwise vortices and develops into a hairpin. The time scale associated with the hairpin auto-generation is 20–30 wall units of time. This demonstrates that hairpins can be created over short distances within a developed turbulent boundary layer, implying that they are not simply remnants of the laminar-to-turbulent transition process far upstream.


Author(s):  
Pranav Joshi ◽  
Xiaofeng Liu ◽  
Joseph Katz

In this study we focus on the effect of mean and fluctuating pressure gradients on the structure of boundary layer turbulence. Two dimensional, time-resolved PIV measurements have been performed upstream of and inside an accelerating sink flow for inlet Reynolds number of Reθ = 3071, and acceleration parameter of K=1.1×10−6. The time-resolved data enables us to calculate the planer projection of pressure gradient by integrating the in-plane components of the material acceleration of the fluid (neglecting out-of-plane contribution). We use it to study the effect of boundary layer scale fluctuating pressure gradients ∂p′~/∂x, which are expected to be mostly two-dimensional, on the flow structure. Due to the imposed mean favorable pressure gradient (FPG) within the sink flow, the Reynolds stresses normalized by the local freestream velocity decrease over the entire boundary layer. However, when scaled by the inlet freestream velocity, the stresses increase close to the wall and decrease in the outer part of the boundary layer. This trend is caused by the confinement of the newly generated vortical structures in the near-wall region of the accelerating flow due to combined effects of downward mean flow, and stretching by velocity gradients. Within both the zero pressure gradient (ZPG) and FPG boundary layers, sweeping motions mostly occur during positive fluctuating pressure gradients ∂p′~/∂x>0 as the fluid moving towards the wall is decelerated by the presence of the wall. Vorticity is depleted in the near-wall region, as the wall absorbs −ω′ from the flow by viscous diffusion. On the other hand, ejections occur mostly during periods of favorable fluctuating pressure gradients ∂p′~/∂x<0. During these periods, there is more viscous flux of vorticity −ω′ into the flow, since ∂−ω′/∂y<0 at the wall. Large scale ejection motions associated with ∂p′~/∂x<0 are more likely to transport smaller scale turbulence to the outer region of the boundary layer, while turbulence remains largely confined close to the wall due to the sweeping motions accompanying ∂p′~/∂x>0. During periods of ∂p′~/∂x>0 in the ZPG boundary layer, sweeps tend to increase the momentum in the near-wall region, whereas the adverse pressure gradient decelerates the fluid. These competing effects result in an unstable ω′<0 shear layer which rolls up into coherent vortical structures and increases ω′ω′ near the wall as compared to periods of ∂p′~/∂x<0. Due to the strong mean acceleration of the flow and weaker sweeps in the FPG boundary layer, the formation of an unstable shear layer, and hence vortical structures, is suppressed, decreasing the enstrophy close to the wall as compared to periods of ∂p′~/∂x<0.


Sign in / Sign up

Export Citation Format

Share Document