Dye visualisation of inclined and skewed synthetic jets in a cross flow

2005 ◽  
Vol 109 (1093) ◽  
pp. 147-155 ◽  
Author(s):  
S. Zhong ◽  
L. Garcillan ◽  
N. J Wood

Abstract Dye visualisation of both inclined synthetic jets and skewed synthetic jets was undertaken in a cross-flow experiment and the results were compared with those of normal synthetic jets. The process of vortex roll-up near the orifice exit and how the structure develops and interacts with the cross-flow as it propagates downstream was investigated so as to obtain an understanding of the effect of orifice orientation on the behaviour of synthetic jets. The effects of varying Reynolds number, velocity ratio and Strouhal number due to changes in diaphragm displacements and freestream velocities on the characteristics of synthetic jets were also examined. It is observed that in comparison to the normal jets vortical structures produced by both inclined and skewed jets tend to stay closer to the near wall region where maximum flow control effect is required. In both cases, at a relatively low Reynolds number and velocity ratio the active structures produced by the synthetic jet appear to be hairpin vortices which turn into vortex rings that migrate away from the wall as the Reynolds number and velocity ratio increase. These hairpin vortices are persistent in the near wall region hence are believed to be desirable structures for delaying flow separation.

2005 ◽  
Vol 109 (1100) ◽  
pp. 461-470 ◽  
Author(s):  
S. Zhong ◽  
F. Millet ◽  
N. J. Wood

Abstract Dye flow visualisation of circular synthetic jets was carried out in laminar boundary layers developing over a flat plate at a range of actuator operating conditions and freestream velocities of 0·05 and 0·1ms–1. The purpose of this work was to study the interaction of synthetic jets with the boundary layer and the nature of vortical structures produced as a result of this interaction. The effects of Reynolds number (Re), velocity ratio (VR ) and Strouhal number (St) on the behaviour of synthetic jets were studied. At low Re and VR , the vortical structures produced by synthetic jets appear as highly stretched hairpin vortices attached to the wall. At intermediate Re and VR , these structures roll up into vortex rings which experience a considerable amount of tilting and stretching as they enter the boundary layer. These vortex rings will eventually propagate outside the boundary layer hence the influence of the synthetic jets on the near wall flow will be confined in the near field of the jet exit. At high Re and VR , the vortex rings appear to experience a certain amount of tilting but no obvious stretching. They penetrate the edge of the boundary layer quickly, producing very limited impact on the near wall flow. Hence it is believed that the hairpin vortices produced at low Re and VR are likely to be the desirable structures for effective flow separation control. In this paper, a vortex model was also described to explain the mechanism of vortex tilting.


2018 ◽  
Vol 856 ◽  
pp. 531-551 ◽  
Author(s):  
Tim Berk ◽  
Nicholas Hutchins ◽  
Ivan Marusic ◽  
Bharathram Ganapathisubramani

Synthetic jets are zero-net-mass-flux actuators that can be used in a range of flow control applications. For some applications, the scaling of the trajectory of the jet with actuation and cross-flow parameters is important. This scaling is investigated for changes in the friction Reynolds number, changes in the velocity ratio (defined as the ratio between the mean jet blowing velocity and the free-stream velocity) and changes in the actuation frequency of the jet. A distinctive aspect of this study is the high-Reynolds-number turbulent boundary layers (up to $Re_{\unicode[STIX]{x1D70F}}=12\,800$) of the cross-flow. To our knowledge, this is the first study to investigate the effect of the friction Reynolds number of the cross-flow on the trajectory of an (unsteady) jet, as well as the first study to systematically investigate the scaling of the trajectory with actuation frequency. A broad range of parameters is varied (rather than an in-depth investigation of a single parameter) and the results of this study are meant to indicate the relative importance of each parameter rather than the exact influence on the trajectory. Within the range of parameters explored, the critical ones are found to be the velocity ratio as well as a non-dimensional frequency based on the jet actuation frequency, the cross-flow velocity and the jet dimensions. The Reynolds number of the boundary layer is shown to have only a small effect on the trajectory. An expression for the trajectory of the jet is derived from the data, which (in the limit) is consistent with known expressions for the trajectory of a steady jet in a cross-flow.


A model of the dynamic physical processes that occur in the near-wall region of a turbulent flow at high Reynolds numbers is described. The hairpin vortex is postulated to be the basic flow structure of the turbulent boundary layer. It is argued that the central features of the near-wall flow can be explained in terms of how asymmetric hairpin vortices interact with the background shear flow, with each other, and with the surface layer near the wall. The physical process that leads to the regeneration of new hairpin vortices near the surface is described, as well as the processes of evolution of such vortices to larger-scale motions farther from the surface. The model is supported by recent important developments in the theory of unsteady surface-layer separation and a number of ‘kernel' experiments which serve to elucidate the basic fluid mechanics phenomena believed to be relevant to the turbulent boundary layer. Explanations for the kinematical behaviour observed in direct numerical simulations of low Reynolds number boundary-layer and channel flows are given. An important aspect of the model is that it has been formulated to be consistent with accepted rational mechanics concepts that are known to provide a proper mathematical description of high Reynolds number flow.


Author(s):  
Masashi Higashiura ◽  
Koichi Inose ◽  
Masahiro Motosuke ◽  
Shinji Honami

The present paper describes a synthetic jet interaction with the cross flow in low Reynolds number condition by flow visualization and the wall static pressure measurements. The primary focus of the current study is to examine the possibility on the interaction of the synthetic jet with the cross flow in low Reynolds number viscous dominant flow. The low bulk velocity of the cross flow is set in a small scale of the wind tunnel with a high aspect ratio. A wide range of Reynolds number based on the tunnel height and the bulk velocity is covered. The flow visualization at Reynolds number of 1,000 is conducted in X-Y and Y-Z planes to clarify the development of the interaction process in the downstream. Both the time averaged and phase averaged wall static pressure were obtained downstream of the jet injection. The synthetic jet has a diameter of 0.5 mm and a frequency of 100 to 400 Hz. The penetration of the jet in the cross flow depends on the jet velocity ratio, and the deepest penetration occurs at the phase of π/2 at the highest jet velocity ratio. The counter rotating longitudinal vortex pair is generated even in low Reynolds number and can be observed at 100d downstream from the injection. The vortex pair shows the up-wash motion at the center of the jet core and the down-wash motion at the outsides of the jet. For the synthetic jet in cross flow, the fluctuated wall static pressure is increased, and the wall static pressure has similar frequency to the synthetic jet.


2001 ◽  
Vol 426 ◽  
pp. 263-295 ◽  
Author(s):  
RUPAD M. DAREKAR ◽  
SPENCER J. SHERWIN

Numerical investigations have been performed for the flow past square-section cylinders with a spanwise geometric deformation leading to a stagnation face with a sinusoidal waviness. The computations were performed using a spectral/hp element solver over a range of Reynolds numbers from 10 to 150.Starting from fully developed shedding past a straight cylinder at a Reynolds number of 100, a sufficiently high waviness is impulsively introduced resulting in the stabilization of the near wake to a time-independent state. It is shown that the spanwise waviness sets up a cross-flow within the growing boundary layer on the leading-edge surface thereby generating streamwise and vertical components of vorticity. These additional components of vorticity appear in regions close to the inflection points of the wavy stagnation face where the spanwise vorticity is weakened. This redistribution of vorticity leads to the breakdown of the unsteady and staggered Kármán vortex wake into a steady and symmetric near-wake structure. The steady nature of the near wake is associated with a reduction in total drag of about 16% at a Reynolds number of 100 compared with the straight, non-wavy cylinder.Further increases in the amplitude of the waviness lead to the emergence of hairpin vortices from the near-wake region. This wake topology has similarities to the wake of a sphere at low Reynolds numbers. The physical structure of the wake due to the variation of the amplitude of the waviness is identified with five distinct regimes. Furthermore, the introduction of a waviness at a wavelength close to the mode A wavelength and the primary wavelength of the straight square-section cylinder leads to the suppression of the Kármán street at a minimal waviness amplitude.


Author(s):  
Yogen Utturkar ◽  
Mehmet Arik ◽  
Mustafa Gursoy

Synthetic jets are meso or micro fluidic devices, which operate on the “zero-net-mass-flux” principle. They impart a positive net momentum flux to the external environment, and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. As a result, recently their application as electronics cooling devices is gaining momentum. Traditionally, synthetic jets have been sought as a replacement to the fan in many electronic devices. However, in certain large applications, complete replacement of the fan is not feasible, because it is necessary to provide the basic level of cooling over a large area of a printed assembly board. Such applications often pose a question whether synthetic jet would be able to locally provide reasonable enhancement over the forced convection of the fan flow. In the present study, we present the cooling performance of synthetic jets complementing forced convection from a fan. Both experiments and CFD computations are performed to investigate the interaction of the jet flowfield with a cross flow from fan. The inlet velocity, jet disk amplitude, and channel height are varied in the computational simulations to evaluate the impact of these changes on the cooling properties. Overall, both studies show that a synthetic jet is able to pulse and disrupt the boundary layer caused from fan flow, and improve heat transfer up to 4× over forced convection.


2019 ◽  
Vol 865 ◽  
pp. 928-962 ◽  
Author(s):  
Haohua Zong ◽  
Marios Kotsonis

Plasma synthetic jet actuators (PSJAs) are particularly suited for high-Reynolds-number, high-speed flow control due to their unique capability of generating supersonic pulsed jets at high frequency (${>}5$  kHz). Different from conventional synthetic jets driven by oscillating piezoelectric diaphragms, the exit-velocity variation of plasma synthetic jets (PSJs) within one period is significantly asymmetric, with ingestion being relatively weaker (less than $20~\text{m}~\text{s}^{-1}$) and longer than ejection. In this study, high-speed phase-locked particle image velocimetry is employed to investigate the interaction between PSJAs (round exit orifice, diameter 2 mm) and a turbulent boundary layer at constant Strouhal number (0.02) and increasing mean velocity ratio ($r$, defined as the ratio of the time-mean velocity over the ejection phase to the free-stream velocity). Two distinct operational regimes are identified for all the tested cases, separated by a transition velocity ratio, lying between $r=0.7$ and $r=1.0$. At large velocity and stroke ratios (first regime, representative case $r=1.6$), vortex rings are followed by a trailing jet column and tilt downstream initially. This downstream tilting is transformed into upstream tilting after the pinch-off of the trailing jet column. The moment of this transformation relative to the discharge advances with decreasing velocity ratio. Shear-layer vortices (SVs) and a hanging vortex pair (HVP) are identified in the windward and leeward sides of the jet body, respectively. The HVP is initially erect and evolves into an inclined primary counter-rotating vortex pair ($p$-CVP) which branches from the middle of the front vortex ring and extends to the near-wall region. The two legs of the $p$-CVP are bridged by SVs, and a secondary counter-rotating vortex pair ($s$-CVP) is induced underneath these two legs. At low velocity and stroke ratios (second regime, representative case $r=0.7$), the trailing jet column and $p$-CVP are absent. Vortex rings always tilt upstream, and the pitching angle increases monotonically with time. An $s$-CVP in the near-wall region is induced directly by the two longitudinal edges of the ring. Inspection of spanwise planes ($yz$-plane) reveals that boundary-layer energization is realized by the downwash effect of either vortex rings or $p$-CVP. In addition, in the streamwise symmetry plane, the increasing wall shear stress is attributed to the removal of low-energy flow by ingestion. The downwash effect of the $s$-CVP does not benefit boundary-layer energization, as the flow swept to the wall is of low energy.


2019 ◽  
Vol 862 ◽  
pp. 1029-1059 ◽  
Author(s):  
Qiang Yang ◽  
Ashley P. Willis ◽  
Yongyun Hwang

A new set of exact coherent states in the form of a travelling wave is reported in plane channel flow. They are continued over a range in $Re$ from approximately $2600$ up to $30\,000$, an order of magnitude higher than those discovered in the transitional regime. This particular type of exact coherent states is found to be gradually more localised in the near-wall region on increasing the Reynolds number. As larger spanwise sizes $L_{z}^{+}$ are considered, these exact coherent states appear via a saddle-node bifurcation with a spanwise size of $L_{z}^{+}\simeq 50$ and their phase speed is found to be $c^{+}\simeq 11$ at all the Reynolds numbers considered. Computation of the eigenspectra shows that the time scale of the exact coherent states is given by $h/U_{cl}$ in channel flow at all Reynolds numbers, and it becomes equivalent to the viscous inner time scale for the exact coherent states in the limit of $Re\rightarrow \infty$. The exact coherent states at several different spanwise sizes are further continued to a higher Reynolds number, $Re=55\,000$, using the eddy-viscosity approach (Hwang & Cossu, Phys. Rev. Lett., vol. 105, 2010, 044505). It is found that the continued exact coherent states at different sizes are self-similar at the given Reynolds number. These observations suggest that, on increasing Reynolds number, new sets of self-sustaining coherent structures are born in the near-wall region. Near this onset, these structures scale in inner units, forming the near-wall self-sustaining structures. With further increase of Reynolds number, the structures that emerged at lower Reynolds numbers subsequently evolve into the self-sustaining structures in the logarithmic region at different length scales, forming a hierarchy of self-similar coherent structures as hypothesised by Townsend (i.e. attached eddy hypothesis). Finally, the energetics of turbulent flow is discussed for a consistent extension of these dynamical systems notions to high Reynolds numbers.


Author(s):  
M. S. Adaramola ◽  
D. Sumner ◽  
D. J. Bergstrom

The effect of the jet-to-cross-flow velocity ratio, R, on the turbulent wake of a cylindrical stack of AR = 9 was investigated with two-component thermal anemometry. The cross-flow Reynolds number was ReD = 2.3×104, the jet Reynolds number ranged from Red = 7×103 to 4.6×104, and R was varied from 0 to 3. The stack was partially immersed in a flat-plate turbulent boundary layer, with a boundary layer thickness-to-height ratio of δ/H = 0.5 at the location of the stack. The flow around the stack was broadly classified into three flow regimes depending on the value of R, which were the downwash (R < 0.5), cross-wind dominated (0.5 < R < 1.5), and jet-dominated (R > 1.5) regimes. Each flow regime had a distinct structure to the mean velocity (streamwise and wall-normal directions), turbulence intensity (streamwise and wall-normal directions), and Reynolds shear stress fields.


Author(s):  
Suad Jakirlic´ ◽  
Bjo¨rn Kniesner ◽  
Sanjin Sˇaric´ ◽  
Kemal Hanjalic´

A method of coupling a low-Reynolds-number k–ε RANS (Reynolds-Averaged Navier-Stokes) model with Large-Eddy Simulation (LES) in a two-layer Hybrid LES/RANS (HLR) scheme is proposed in the present work. The RANS model covers the near-wall region and the LES model the remainder of the flow domain. Two different subgrid-scale (SGS) models in LES were considered, the Smagorinsky model and the one-equation model for the residual kinetic energy (Yoshizawa and Horiuti, 1985), combined with two versions of the RANS ε equation, one governing the “isotropic” (ε˜; Chien, 1982) and the other the “homogeneous” dissipation rate (εh; Jakirlic and Hanjalic, 2002). Both fixed and self-adjusting interface locations were considered. The exchange of the variables across the interface was adjusted by smoothing the turbulence viscosity either by adjusting the RANS model parameters, such as Cμ (Temmerman et al., 2005), or by applying an additional forcing at the interface using a method of digital-filter-based generation of inflow data for spatially developing DNS and LES due to Klein et al. (2003). The feasibility of the method was illustrated against the available DNS, fine- and coarse grid LES, DES (Detached Eddy Simulation) and experiments in turbulent flow over a backward-facing step at a low (Yoshioka et al., 2001) and a high Re number (Vogel and Eaton, 1985), periodic flow over a series of 2-D hills (Fro¨hlich et al., 2005) and in a high-Re flow over a 2-D, wall-mounted hump (Greenblat et al, 2004). Prior to these computations, the method was validated in a fully-developed channel flow at a moderate Reynolds number Rem ≈ 24000 (Abe et al., 2004).


Sign in / Sign up

Export Citation Format

Share Document