A Sequel to Technical Note 13: The Curved Tetrahedronal and Triangular Elements TEC and TRIC for the Matrix Displacement Method

1969 ◽  
Vol 73 (697) ◽  
pp. 55-65 ◽  
Author(s):  
J. H. Argyris ◽  
D. W. Scharpf

It is by now well established that the computational analysis of significant problems in structural and continuum mechanics by the matrix displacement method often requires elements of higher sophistication than used in the past. This refers, in particular, to regions of steep stress gradients, which are frequently associated with marked changes in geometry, involving rapid variations of the radius of curvature. The philosophy underlying the idealisation of such configurations into finite elements was discussed in broad terms in ref. 1. It was emphasised that the so successful, constant strain, two-dimensional TRIM 3 and three-dimensional TET 4 elements do not, in general, prove the best choice. For this reason elements with a linear variation of strain like TRIM 6 and TET 10 were originally evolved and followed up with the quadratic strain elements TRIM 15, TRIA 4 (two-dimensional) and TET 20, TEA 8 (three-dimensional) of ref. 2. However, all these elements are characterised by straight edges and necessitate a polygonisation or polyhedrisation in the idealisation process. This may not be critical in many problems, but is sometimes of doubtful validity in the immediate neighbourhood of a curved boundary, where stress concentrations are most pronounced. To overcome this difficulty with a significant (local) increase of elements does not always yield the most economical and technically satisfactory solution. Moreover, there arises another inevitable shortcoming when dealing with TRIM and TET elements with a linear or quadratic variation of strain. Indeed, while TRIM 3 and TET 4 elements permit a very elegant extension into the realm of large displacements, this is not possible for the higher order TRIM and TET elements. This is simply due to the fact that TRIM 3 and TET 4 elements, by virtue of their specification, always remain straight under any magnitude of strain, but this is not so for the triangular and tetrahedron elements of higher sophistication.

1965 ◽  
Vol 69 (660) ◽  
pp. 877-880 ◽  
Author(s):  
J. H. Arcyris,

The author mentioned in his Main Lecture(1) the success achieved in the analysis of three-dimensional media, for small and large displacements, as well as anisotropic and non-elastic behaviour, by the introduction of tetrahedron elements of constant strain and stress(2), see also technical note 1 of this series(3). A cardinal point of the theory is the specification of natural strains, stresses and stiffness. At the same time attention was drawn to certain difficulties arising in the interpretation of the stresses at the nodal or other points, which are more severe than for constant strain triangles, the corresponding elements in the two-dimensional case. It was suggested in the lecture that a considerable improvement might be achieved by the specification of a linearly varying strain or stress state within the tetrahedron. The solution of this problem, limited to small displacements, is summarised in this fifth technical note and its application is to be demonstrated on an example in the printed lecture.


1969 ◽  
Vol 39 (7) ◽  
pp. 618-626 ◽  
Author(s):  
Peter Van Dyke ◽  
John M. Hedgepeth

The solution of the two-dimensional, elastic, multiple-filament-failure stress concentration problem led to the treatment of three-dimensional, elastic failure models and a two-dimensional, plastic failure model where an ideally plastic behavior of the matrix material adjacent to a broken filament was assumed. Another plastic behavior is proposed wherein the bond between the broken filament and the adjacent matrix material fails completely after reaching a prescribed stress level. This failure formulation is applied to five- and seven-element-width models as well as to the infinite element case. Both the bond failure and matrix yield models are then extended to the three-dimensional cases with both square and hexagonal element configurations.


1965 ◽  
Vol 69 (657) ◽  
pp. 633-636 ◽  
Author(s):  
J . H. Argyris

The author presented in his recent main lecture to the Society, “The Computer Shapes the Theory”, a number of novel developments in the matrix displacement method. Since the publication of the lecture and discussion will inevitably be delayed and cannot but illustrate the application of the new ideas on a series of examples, he has been repeatedly urged to summarise some of the more important theoretical contributions in the form of Technical Notes. The first deals with the elasto-plastic analysis, in the presence of strain hardening, of arbitrary three-dimensional configurations. The reader is assumed to be familiar with the corresponding elastic analysis given in refs. 2 and 3, where the medium is represented by a suitable assembly of tetrahedra under constant stress and strain. The corresponding two-dimensional case is investigated on the basis of triangles. Arbitrary anisotropic behaviour and large displacements were also included in refs. 2 and 3.


1982 ◽  
Vol 92 (3) ◽  
pp. 747-752 ◽  
Author(s):  
WS Haston ◽  
JM Shields ◽  
PC Wilkinson

The adhesion and locomotion of mouse peripheral lymph node lymphocytes on 2-D protein- coated substrata and in 3-D matrices were compared. Lymphocytes did not adhere to, or migrate on, 2-D substrata suck as serum- or fibronectin-coated glass. They did attach to and migrate in hydrated 3-D collagen lattices. When the collagen was dehydrated to form a 2-D surface, lymphocyte attachment to it was reduced. We propose that lymphocytes, which are poorly adhesive, are able to attach to and migrate in 3-D matrices by a nonadhesive mechanism such as the extension and expansion of pseudopodia through gaps in the matrix, which could provide purchase for movement in the absence of discrete intermolecular adhesions. This was supported by studies using serum-coated micropore filters, since lymphocytes attached to and migrated into filters with pore sizes large enough (3 or 8 mum) to allow pseudopod penetration but did not attach to filters made of an identical material (cellulose esters) but of narrow pore size (0.22 or 0.45 mum). Cinematographic studies of lymphocyte locomotion in collagen gels were also consistent with the above hypothesis, since lymphocytes showed a more variable morphology than is typically seen on plane surfaces, with formation of many small pseudopodia expanded to give a marked constriction between the cell and the pseudopod. These extensions often remained fixed with respect to the environment as the lymphocyte moved away from or past them. This suggests that the pseudopodia were inserted into gaps in the gel matrix and acted as anchorage points for locomotion.


2018 ◽  
Vol 25 (9) ◽  
pp. 3386-3405 ◽  
Author(s):  
Maryam Hassani ◽  
Arash Shahin ◽  
Manouchehr Kheradmandnia

Purpose The purpose of this paper is to examine the application of C-shaped QFD 3D Matrix in comparing process characteristics (PC), performance aspects (PA) and customer requirements, simultaneously and to prioritize the first two sets, respectively. Design/methodology/approach A three dimensional matrix has been developed with three sets of PC, PA and customers’ requirements and C-shaped matrix has been applied for simultaneous comparison of the dimensions and prioritization of the subsets of PC and PA. The proposed approach has been examined in a post bank. Findings Findings confirm the possibility of simultaneous comparison and prioritization of the three sets of dimensions of this study in post bank services. In addition, “growth and learning” and “bilateral relationship with suppliers” had the first priorities among PA and PC, respectively. Research limitations/implications While the proposed approach has many advantages, filling the matrixes is time-consuming. Since illustrating the 3D matrix was not possible, the matrix was separated into five two-dimensional matrixes. Originality/value Compared to the studied literature, the proposed approach is practically new in the post bank services.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1819 ◽  
Author(s):  
Francois Bordeleau ◽  
Cynthia A. Reinhart-King

There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.


2007 ◽  
Vol 17 (04) ◽  
pp. 593-615 ◽  
Author(s):  
J. ELSCHNER ◽  
H.-C. KAISER ◽  
J. REHBERG ◽  
G. SCHMIDT

Let ϒ be a three-dimensional Lipschitz polyhedron, and assume that the matrix function μ is piecewise constant on a polyhedral partition of ϒ. Based on regularity results for solutions to two-dimensional anisotropic transmission problems near corner points we obtain conditions on μ and the intersection angles between interfaces and ∂ϒ ensuring that the operator -∇ · μ∇ maps the Sobolev space [Formula: see text] isomorphically onto W-1,q(ϒ) for some q > 3.


Author(s):  
Tae-Yun Kim ◽  
Hae-Gil Hwang ◽  
Heung-Kook Choi

We review computerized cancer cell image analysis and visualization research over the past 30 years. Image acquisition, feature extraction, classification, and visualization from two-dimensional to three-dimensional image algorithms are introduced with case studies of bladder, prostate, breast, and renal carcinomas.


1951 ◽  
Vol 3 (3) ◽  
pp. 193-210 ◽  
Author(s):  
M.J. Lighthill

SummaryThe general technique for rendering approximate solutions to physical problems uniformly valid is here applied to the simplest form of the problem of correcting the theory of thin wings near a rounded leading edge. The flow investigated is two-dimensional, irrotational and incompressible, and therefore the results do not materially add to our already extensive knowledge of this subject, but the method, which is here satisfactorily checked against this knowledge, shows promise of extension to three-dimensional, and compressible, flow problems.The conclusion, in the problem studied here, is that the velocity field obtained by a straightforward expansion in powers of the disturbances, up to and including either the first or the second power, with coefficients functions of co-ordinates such that the leading edge is at the origin and the aerofoil chord is one of the axes, may be rendered a valid first approximation near the leading edge, as well as a valid first or second approximation away from it, if the whole field is shifted downstream parallel to the chord for a distance of half the leading edge radius of curvature ρL. It follows that the fluid speed on the aerofoil surface, as given on such a straightforward second approximation as a function of distance x along the chord, similarly is rendered uniformly valid (see equation (52)) if the part singular like x-1 is subtracted and the remainder is multiplied by .


1968 ◽  
Vol 72 (691) ◽  
pp. 613-617 ◽  
Author(s):  
J. H. Argyris ◽  
I. Fried ◽  
D. W. Scharpf

The description of the LUMINA element in T.N. 11 is followed by another three-dimensional interpolation element, called HERMES 8, available in the ASKA language and briefly mentioned in ref. 1. Just as the LUMINA set, the HERMES element represents a general hexahedronal element with curved faces and has proved a most useful component block for three-dimensional analysis of complex bodies. The cardinal idea underlying the HERMES development aims at combining the advantages of the Lagrangian and Hermitian interpolation techniques.


Sign in / Sign up

Export Citation Format

Share Document