Vibration of Rectangular Plates Point-Supported at the Corners

1960 ◽  
Vol 11 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hugh L. Cox ◽  
Jack Boxer

SummaryThe fundamental frequencies of flexural vibration are determined for uniform isotropic rectangular plates that have free edges and pinpoint supports at the four corners. For the particular case of a square plate the lowest five frequencies and mode shapes have been determined. The second frequency is most unusual, since an infinite number of mode shapes exist with identical frequencies. Finite difference expressions, which simplify the treatment of the free boundaries for definite values of Poisson's ratio, are used in conjunction with extrapolation procedures to obtain the approximate solutions.

1962 ◽  
Vol 66 (616) ◽  
pp. 240-241 ◽  
Author(s):  
C. L. Kirk

Recently Cox and Boxer determined natural frequencies and mode shapes of flexural vibration of uniform rectangular isotropic plates, that have free edges and pinpoint supports at the four corners. In their analysis, they obtain approximate solutions of the differential equation through the use of finite difference expressions and an electronic digital computer. In the present note, the frequency expression and mode shape for a square plate, vibrating at the lowest natural frequency, are determined by considerations of energy. The values obtained are compared with those given in reference.


1963 ◽  
Vol 67 (634) ◽  
pp. 664-668 ◽  
Author(s):  
S. Mahalingam

SummaryThe basis of the procedure described in the paper is the replacement of the stiffeners by an approximately equivalent system of line springs. One of two methods may then be used to determine the natural frequencies. A rectangular plate with edge stiffeners, point-supported at the four corners, is used to demonstrate the application of the Rayleigh-Ritz method. Numerical results obtained are compared with known approximate solutions based on finite difference equations. A Holzer-type iteration is employed in the case of a plate with parallel stiffeners, where the two edges perpendicular to the stiffeners are simply supported, the other two edges having any combination of conditions.


1950 ◽  
Vol 17 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Dana Young

Abstract Ritz’s method is one of several possible procedures for obtaining approximate solutions for the frequencies and modes of vibration of thin elastic plates. The accuracy of the results and the practicability of the computations depend to a great extent upon the set of functions that is chosen to represent the plate deflection. In this investigation, use is made of the functions which define the normal modes of vibration of a uniform beam. Tables of values of these functions have been computed as well as values of different integrals of the functions and their derivatives. With the aid of these data, the necessary equations can be set up and solved with reasonable effort. Solutions are obtained for three specific plate problems, namely, (a) square plate clamped at all four edges, (b) square plate clamped along two adjacent edges and free along the other two edges, and (c) square plate clamped along one edge and free along the other three edges.


1993 ◽  
Vol 115 (4) ◽  
pp. 441-447 ◽  
Author(s):  
K. M. Liew ◽  
C. M. Wang

An investigation into the vibration analysis of a class of in-plane loaded rectangular plates with internal supports of arbitrary contour is conducted. Solutions to this vibration problem are obtained based on the pb-2 Rayleigh-Ritz method. The Ritz function for this method is defined as the product of (1) a two-dimensional polynomial function expanded in a new manner, (2) equations of the internal support and (3) equations of the boundary supports each raised to the power of either 0, 1, or 2 corresponding to a free, simply supported or clamped edge, respectively. A comparison study on the convergence between the proposed set of polynomials and mathematically complete set of polynomials is conducted. The simplicity and accuracy of the method are demonstrated by analyzing square plates with either two intersecting internal line supports or a central ring support. The influence of the in-plane loads on the natural frequencies will be studied. Note that this paper presents some first known solutions to in-plane loaded rectangular plates with internal supports of arbitrary contour. The mode shapes for these plates are also presented in contour plots.


1961 ◽  
Vol 65 (610) ◽  
pp. 695-697 ◽  
Author(s):  
C. L. Kirk

Natural frequencies of free flexural vibration of rectangular plates may, in many cases, be considerably increased by attaching to the plate one or more elastic stiffening ribs parallel to one edge, or by casting or machining the plate and stiffeners integrally.Hoppmann has determined by a semi-empirical method the natural frequencies of an integrally stiffened simply-supported square plate, using the concept of a homogeneous orthotropic plate of uniform thickness having elastic compliances which are equivalent to those of the stiffened plate. Filippov has obtained the exact solution for the fundamental frequency of a simply-supported square plate having a number of equally spaced stiffeners and has considered the effect of point loads applied to the stiffeners in a direction perpendicular to the plane of the plate.


1982 ◽  
Vol 49 (2) ◽  
pp. 396-402 ◽  
Author(s):  
J. N. Reddy ◽  
W. C. Chao

A finite-element analysis of the equations governing the large-amplitude, free, flexural oscillations of laminated, anisotropic, rectangular plates is presented. The equations account for transverse shear strains as well as large rotations. Numerical results of nonlinear fundamental frequencies are presented for rectangular plates of both angle-ply and cross-ply constructions. The effects of amplitude, boundary conditions, transverse shear, aspect ratio, orientation of layers, and materials anisotrophy on natural frequencies are investigated. The present finite element results agree with other approximate solutions available in the literature.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 923 ◽  
Author(s):  
Abdul Ghafoor ◽  
Sirajul Haq ◽  
Manzoor Hussain ◽  
Poom Kumam ◽  
Muhammad Asif Jan

In this paper, a wavelet based collocation method is formulated for an approximate solution of (1 + 1)- and (1 + 2)-dimensional time fractional diffusion wave equations. The main objective of this study is to combine the finite difference method with Haar wavelets. One and two dimensional Haar wavelets are used for the discretization of a spatial operator while time fractional derivative is approximated using second order finite difference and quadrature rule. The scheme has an excellent feature that converts a time fractional partial differential equation to a system of algebraic equations which can be solved easily. The suggested technique is applied to solve some test problems. The obtained results have been compared with existing results in the literature. Also, the accuracy of the scheme has been checked by computing L 2 and L ∞ error norms. Computations validate that the proposed method produces good results, which are comparable with exact solutions and those presented before.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Sign in / Sign up

Export Citation Format

Share Document