scholarly journals Effect of Thrust on the Structural Vibrations of a Nonuniform Slender Rocket

2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.

1962 ◽  
Vol 66 (616) ◽  
pp. 240-241 ◽  
Author(s):  
C. L. Kirk

Recently Cox and Boxer determined natural frequencies and mode shapes of flexural vibration of uniform rectangular isotropic plates, that have free edges and pinpoint supports at the four corners. In their analysis, they obtain approximate solutions of the differential equation through the use of finite difference expressions and an electronic digital computer. In the present note, the frequency expression and mode shape for a square plate, vibrating at the lowest natural frequency, are determined by considerations of energy. The values obtained are compared with those given in reference.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.


Author(s):  
Mondher Yahiaoui

In this paper, we present a fourth-order accurate and a seventh-order accurate, one-step compact difference methods. These methods can be used to solve initial or boundaryvalue problems which can be modeled by a first-order linear system of differential equations. It is then shown in detail how these methods can be used to solve vibration problems of onedimensional continuous systems. Natural frequencies of a cantilever beam in transverse vibrations are computed and the results are compared to analytical ones to prove the high accuracy and efficiency of both methods. A comparison was also made to a finite element solution and the results have shown that both compact-difference methods yield more accurate values even with a reduced number of intervals.


1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Natalie Waksmanski ◽  
Ernian Pan ◽  
Lian-Zhi Yang ◽  
Yang Gao

An exact closed-form solution of free vibration of a simply supported and multilayered one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formulation and propagator matrix method. Natural frequencies and mode shapes are presented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates made of crystals and QCs. The natural frequencies and the corresponding mode shapes of the plates show the influence of stacking sequence on multilayered plates and the different roles phonon and phason modes play in dynamic analysis of QCs. This work could be employed to further expand the applications of QCs especially if used as composite materials.


Author(s):  
Mohammad A. Bukhari ◽  
Oumar R. Barry

This paper presents the nonlinear vibration of a simply supported Euler-Bernoulli beam with a mass-spring system subjected to a primary resonance excitation. The nonlinearity is due to the mid-plane stretching and cubic spring stiffness. The equations of motion and the boundary conditions are derived using Hamiltons principle. The nonlinear system of equations are solved using the method of multiple scales. Explicit expressions are obtained for the mode shapes, natural frequencies, nonlinear frequencies, and frequency response curves. The validity of the results is demonstrated via comparison with results in the literature. Exact natural frequencies are obtained for different locations, rotational inertias, and masses.


Author(s):  
Bashar K. Hammad ◽  
Ali H. Nayfeh ◽  
Eihab Abdel-Rahman

We present a reduced-order model and closed-form expressions describing the response of a micromechanical filter made up of two clamped-clamped microbeam capacitive resonators coupled by a weak microbeam. The model accounts for geometrical and electrical nonlinearities as well as the coupling between them. It is obtained by discretizing the distributed-parameter system using the Galerkin procedure. The basis functions are the linear undamped global mode shapes of the unactuated filter. Closed-form expressions for these mode shapes and the coressponding natural frequencies are obtained by formulating a boundary-value problem (BVP) that is composed of five equations and twenty boundary conditions. This problem is transformed into solving a system of twenty linear homogeneous algebraic equations for twenty constants and the natural frequencies. We predict the deflection and the voltage at which the static pull-in occurs by solving another boundary-value problem (BVP). We also solve an eigenvalue problem (EVP) to determine the two natural frequencies delineating the bandwidth of the actuated filter. Using the method of multiple scales, we determine four first-order nonlinear ODEs describing the amplitudes and phases of the modes. We found a good agreement between the results obtained using our model and the published experimental results. We found that the filter can be tuned to operate linearly for a wide range of input signal strengths by choosing a DC voltage that makes the effective nonlinearities vanish.


2020 ◽  
Vol 10 (2) ◽  
pp. 493 ◽  
Author(s):  
Ma’en S. Sari ◽  
Wael G. Al-Kouz ◽  
Anas M. Atieh

The natural vibration behavior of axially functionally graded (AFG) double nanobeams is studied based on the Euler–Bernoulli beam and Eringen’s non-local elasticity theory. The double nanobeams are continuously connected by a layer of linear springs. The oscillatory differential equation of motion is established using the Hamilton’s principle and the constitutive relations. The Chebyshev spectral collocation method (CSCM) is used to transform the coupled governing differential equations of motion into algebraic equations. The discretized boundary conditions are used to modify the Chebyshev differentiation matrices, and the system of equations is put in the matrix-vector form. Then, the dimensionless transverse frequencies and the mode shapes are obtained by solving the standard eigenvalue problem. The effects of the coupling springs, Winkler stiffness, the shear stiffness parameter, the breadth and taper ratios, the small-scale parameter, and the boundary conditions on the natural transverse frequencies are carried out. Several numerical examples were conducted, and the authors believe that the results may be interesting in designing and analyzing double and multiple one-dimensional nano structures.


Author(s):  
Xiaopeng Zhao ◽  
Eihab M. Abdel-Rahman ◽  
Ali H. Nayfeh

We present a nonlinear model of electrically actuated microplates. The model accounts for the nonlinearity in the electric forcing as well as mid-plane stretching of the plate. We use a Galerkin approximation to reduce the partial-differential equations of motion to a finite-dimension system of nonlinearly coupled second-order ordinary-differential equations. We find the deflection of the microplate under DC voltage and study the pull-in phenomenon. The natural frequencies and mode shapes are then obtained around the deflected position of the microplate by solving the linear eigenvalue problem. The effect of various design parameters on both the static response and the dynamic characteristics are studied.


Sign in / Sign up

Export Citation Format

Share Document