Flexural Vibration of In-Plane Loaded Plates with Straight Line/Curved Internal Supports

1993 ◽  
Vol 115 (4) ◽  
pp. 441-447 ◽  
Author(s):  
K. M. Liew ◽  
C. M. Wang

An investigation into the vibration analysis of a class of in-plane loaded rectangular plates with internal supports of arbitrary contour is conducted. Solutions to this vibration problem are obtained based on the pb-2 Rayleigh-Ritz method. The Ritz function for this method is defined as the product of (1) a two-dimensional polynomial function expanded in a new manner, (2) equations of the internal support and (3) equations of the boundary supports each raised to the power of either 0, 1, or 2 corresponding to a free, simply supported or clamped edge, respectively. A comparison study on the convergence between the proposed set of polynomials and mathematically complete set of polynomials is conducted. The simplicity and accuracy of the method are demonstrated by analyzing square plates with either two intersecting internal line supports or a central ring support. The influence of the in-plane loads on the natural frequencies will be studied. Note that this paper presents some first known solutions to in-plane loaded rectangular plates with internal supports of arbitrary contour. The mode shapes for these plates are also presented in contour plots.

1994 ◽  
Vol 116 (2) ◽  
pp. 141-145 ◽  
Author(s):  
K. M. Liew

Treated in this paper is the free-flexural vibration analysis of symmetrically laminated thin circular plates. The total energy functional for the laminated plates is formulated where the pb-2 Ritz method is applied for the solution. The assumed displacement is defined as the product of (1) a two-dimensional complete polynomial function and (2) a basic boundary function. The simplicity and accuracy of the numerical procedure will be demonstrated by solving some plate examples. In the present study, the effects of material properties, number of layers and fiber stacking sequences upon the vibration frequency parameters are investigated. Selected mode shapes by means of contour plots for several 16-ply laminated plates with different fiber stacking sequences and composite materials are presented. This study may provide valuable information for researchers and engineers in design applications. In addition, the present solution plays an important role in increasing the existing data base for future references.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


2017 ◽  
Vol 23 (9) ◽  
pp. 1291-1302 ◽  
Author(s):  
S Sorrentino ◽  
G Catania

This study investigates the dynamic behaviour of plates crossed by distributed moving gravitational and inertial loads, in the case in which the relative magnitude of the moving mass introduces a coupling effect with the structure, with possible applications to the vibration analysis of railway bridges. A rectangular Kirchhoff plate is considered, simply supported on two opposite edges and free on the other two edges, loaded by a partially distributed mass travelling in the parallel direction with respect to the free edges. The formulation includes damping, and it is accomplished by the Rayleigh–Ritz method, expressing the solution in semi-analytical form. The shape functions for describing the transverse displacement field of the plate are selected as tensor products of linearly independent eigenfunctions of homogeneous uniform beams in flexural vibration, yielding a low-order model with time-dependent coefficients. Numerical examples are then presented and discussed, aimed at investigating the effects of each of the model governing parameters.


2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Yajuvindra Kumar ◽  
R. Lal

An analysis and numerical results are presented for buckling and transverse vibration of orthotropic nonhomogeneous rectangular plates of variable thickness using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method on the basis of classical plate theory when uniformly distributed in-plane loading is acting at two opposite edges clamped/simply supported. The Gram–Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of various plate parameters such as nonhomogeneity parameters, aspect ratio together with thickness variation, and in-plane load on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported, and free edges correct to four decimal places. Three dimensional mode shapes for a specified plate for all the four boundary conditions have been plotted. By allowing the frequency to approach zero, the critical buckling loads in compression for various values of plate parameters have been computed correct to six significant digits. A comparison of results with those available in the literature has been presented.


2012 ◽  
Vol 19 (3) ◽  
pp. 349-364 ◽  
Author(s):  
R. Lal ◽  
Yajuvindra Kumar

The free transverse vibrations of thin nonhomogeneous rectangular plates of variable thickness have been studied using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Gram-Schmidt process has been used to generate these orthogonal polynomials in two variables. The thickness variation is bidirectional and is the cartesian product of linear variations along two concurrent edges of the plate. The nonhomogeneity of the plate is assumed to arise due to linear variations in Young's modulus and density of the plate material with the in-plane coordinates. Numerical results have been computed for four different combinations of clamped, simply supported and free edges. Effect of the nonhomogeneity and thickness variation with varying values of aspect ratio on the natural frequencies of vibration is illustrated for the first three modes of vibration. Three dimensional mode shapes for all the four boundary conditions have been presented. A comparison of results with those available in the literature has been made.


1960 ◽  
Vol 11 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hugh L. Cox ◽  
Jack Boxer

SummaryThe fundamental frequencies of flexural vibration are determined for uniform isotropic rectangular plates that have free edges and pinpoint supports at the four corners. For the particular case of a square plate the lowest five frequencies and mode shapes have been determined. The second frequency is most unusual, since an infinite number of mode shapes exist with identical frequencies. Finite difference expressions, which simplify the treatment of the free boundaries for definite values of Poisson's ratio, are used in conjunction with extrapolation procedures to obtain the approximate solutions.


Sign in / Sign up

Export Citation Format

Share Document