Productivity and carcass composition of Friesian, Meuse-Rhine-Issel (MRI) × Friesian and Belgian Blue × Friesian steers

1994 ◽  
Vol 59 (2) ◽  
pp. 197-208 ◽  
Author(s):  
M. G. Keane

AbstractOne hundred and twenty spring-born steers, comprising 40 Friesians (FR), 40 Meuse-Rhine-lssel (MRI) × Friesians (MR), and 40 Belgian Blue × Friesians (BB) were reared together from 3 weeks of age to the start of their second winter. During the second winter there was a 3 (FR, MR and BB breed types) × 2 (3 kg and 6 kg supplementary concentrates per head daily with grass silage ad libitum) × 2 (96- and 220-day finishing periods) factorial arrangement of treatments (10 animals per subgroup). Carcass weights and grades were recorded after slaughter at the end of the second winter, and one side from each of 96 carcasses (eight per subgroup) was dissected into bone, muscle, intermuscular fat and subcutaneous fat. A sample of m. longissimus from the 10th rib was chemically analysed. Slaughter weights and carcass weights per day from arrival to slaughter were 796, 813 and 828 (s.e.d. 11·7) g and 419, 440 and 457 (s.e.d. 7·1) g for FR, MR and BB, respectively. Corresponding carcass weights were 314, 329 and 342 (s.e.d. 4·5) kg. BB had better conformation than both FR and MR. BB also had a lower carcass fat score, lower proportions of bone, intermuscular fat and subcutaneous fat, a higher proportion of muscle and muscle with higher proportion of moisture and a lower proportion of lipid than FR and MR. The higher level of concentrates increased side iveight by 8 kg, but the overall effects on carcass composition were small. The longer finishing period increased side weight by 25 kg and was associated with significantly reduced proportions of bone and muscle and an increased proportion of fat. Allometric regression coefficients for carcass weight on slaughter weight, and for bone, muscle and fat weights on side weight were 1·19, 0·39, 0·80 and 2·16, respectively. It is concluded that despite the better carcass conformation of MR, there was little difference in carcass and muscle composition between FR and MR. BB, in addition to having a higher growth rate and better carcass conformation than FR, also had more muscle in the carcass, more of the total muscle in the higher value joints and a lower proportion of lipid in the muscle. It was calculated that FR, MR and BB would have similar proportions of separable fat in the carcass at approximate carcass weights of 300, 320 and 400 kg, respectively.

1992 ◽  
Vol 55 (3) ◽  
pp. 377-387 ◽  
Author(s):  
M. G. Keane ◽  
G. J. More O'Ferrall

AbstractOne hundred and twenty spring-born steers comprised of 40 Friesians (FR), 40 Canadian Hereford × Friesians (HF) and 40 Simmental × Friesians (SM) were reared together from shortly after birth to slaughter after a mean period of 740 days. During the finishing winter there was a 3 (breed types) × 2 (3 and 6 kg supplementary concentrates per head daily with grass silage ad libitum) × 2 (222- and 225-day finishing periods) factorial arrangement of treatments. One side from each of 96 carcasses (eight per treatment) was completely separated into bone, muscle, intermuscular fat and subcutaneous fat and a 10th rib sample of m. longissimus was chemically analysed.Carcass weights per day of age and carcass weights were 404, 433 and 449 (s.e. 4·6) g and 301, 320 and 330 (s.e. 3·4) kg for FR, HF and SM, respectively. Corresponding proportions of carcass muscle were 602, 577 and 628 (s.e. 4·8) g/kg. FR and HF had similar proportions of their total muscle in the hindquarter, whereas SM had more of their muscle in the hindquarter. M. longissimus lipid concentrations for FR, HF and SM were 36, 39 and 26 (s.e. 1·96) g/kg. Increasing supplementary concentrate level from 3 to 6 kg/day increased side weight by 7 kg, of which proportionately 0·48 was fat. Extending the finishing period from 121 to 225 days increased side weight by 22 kg of which proportionately 0·45 was fat. Both the higher concentrate level and the longer finishing period reduced carcass muscle and bone proportions, and increased carcass fat proportion. Allometric regression coefficients for side muscle, bone and fat weights on side weight were 0·75, 0·51 and 2·13, respectively. It was calculated that FR, HF and SM would have similar carcass fat proportions at approximate carcass weights of 320, 290 and 380 kg, respectively.


1972 ◽  
Vol 23 (5) ◽  
pp. 905 ◽  
Author(s):  
DD Charles ◽  
ER Johnson

(1) Six buffalo bulls 14–48 months old were slaughtered and subjected to detailed anatomical dissection. (2) The dressing percentage of 55.2 was greater than that in cattle of similar carcass fatness (10.6). (3) Muscle constituted 37.1% of empty liveweight. (4) The carcasses had a high proportion by weight of muscle (68.6%), a low proportion of bone (17.3%), and a low proportion of fat (10.6%) relative to the proportions found in steer carcasses of similar muscle plus bone weights or total dissected fat percentages. (5) A study of muscle weight distribution showed that the spinal muscle group formed a lesser proportion of total muscle than in bovine steers, while the muscles of the proximal forelimb, those of the thorax passing onto the forelimb, and the intrinsic muscles of neck and thorax formed a greater proportion. The possibility of a sex effect on muscle weight distribution was discussed. (6) Fat distribution featured a high proportion of intermuscular fat relative to subcutaneous fat, and the proportions of kidney and channel fats were greater than those encountered in comparable bovine steer carcasses.


1989 ◽  
Vol 48 (2) ◽  
pp. 353-365 ◽  
Author(s):  
M. G. Keane ◽  
G. J. More O'Ferrall ◽  
J. Connolly

ABSTRACTOne hundred and twenty spring-born steers comprising 40 Friesians (FR), 40 Limousin × Friesians (LM), and 40 Blonde d'Aquitaine ' Friesians (BL), were reared together from shortly after birth to slaughter at a mean age of 771 days. They were at pasture in summer and were housed and offered grass silage plus concentrates in winter. All were implanted with anabolic agents. During the finishing winter, there was a 3 (breed types) ' 2 (3 or 6 kg concentrates per day) ' 2 (94 or 181 day finishing period) factorial arrangement of treatments.Slaughter weights per day of age, carcass weights per day of age and carcass weights of FR, LM and BL were 846, 828 and 866 (s.e. 8·0) g, 464, 476 and 497 (s.e. 4·9) g and 358, 368 and 385 (s.e. 3·8) kg respectively. LM had lower carcass length, carcass depth, leg length and leg width values than FR or BL but when these measurements were expressed per kg carcass weight the values for LM and BL were similar. Both LM and BL had better carcass conformation than FR, and BL had a lower carcass fat score than either FR or LM between which there was no difference. FR, LM and BL had carcass lean, fat and higher-priced lean proportions of 634, 669 and 685 (s.e. 3·7), 185, 168 and 144 (s.e. 3·7) and 352, 361 and 361 (s.e. 1·4) g/kg respectively.Increasing the concentrate level from 3 to 6 kg per day increased side weight by 9·6 kg (P < 0·001). This consisted of 0·6 kg bone, 3·3 kg lean and 5·7 kg fat. Extending the finishing period from 94 to 181 days increased side weight by 30·3 kg (P < 0·001). This consisted of 2·6 kg bone, 12·0 kg lean and 15·7 kg fat. Allometric regression coefficients for side lean, bone and fat weights on side weight were not significantly affected by breed type or concentrate level. The coefficients for lean, bone and fat were 0·80 (s.e. 0·04), 0·58 (s.e. 0·05) and 2·27 (s.e. 0·16) respectively. The coefficients for weights of lean in the hind-shin, fore-shin, fillet and brisket on side lean weight were 0·8 or lower. The corresponding coefficients for silverside, inside round, knuckle, rump and strip-loin were between 0·8 and 1·0 while the flank, shoulder, neck, chuck, plate, fore-rib and cube-roll had coefficients in the range 1·0 to 1·5.


1979 ◽  
Vol 30 (6) ◽  
pp. 1207 ◽  
Author(s):  
JM Thompson ◽  
KD Atkins ◽  
AR Gilmour

Half-carcasses of 108 wether and ewe lambs from six genotypes, slaughtered at 34, 44 and 54 kg liveweight, were dissected into subcutaneous fat, intermuscular fat, muscle, bone and connective tissue. The six genotypes were the progeny of Dorset Horn and Border Leicester rams mated to Merino, Corriedale and Border Leicester x Merino first-cross ewes. As carcass weight increased, the proportion of subcutaneous and intermuscular fat increased (b > 1 ; P < 0.05) and the proportion of muscle and bone decreased (b < 1; P < 0.05). Lambs sired by Border Leicester rams had more subcutaneous fat (12.7%), more intermuscular fat (7.6%) and more bone (5.7%) than lambs sired by Dorset Horn rams at the same carcass weight (P< 0.05). Similarly, lambs sired by Dorset Horn rams had more muscle (7.2%) than lambs sired by Border Leicester rams at the same carcass weight (P < 0.05). Breed of dam had no effect on carcass composition. Wether lambs had a greater proportion of bone (5.7%) than ewe lambs at the same carcass weight (P < 0.05). The breed of sire effect and the lack of a breed of dam effect on carcass composition, in conjunction with estimated mature weights for the breeds, suggest possible differences between sire and dam breeds in the partitioning of fat between the carcass and non-carcass depots. ____________________ *Part I, Aust. J. Agric. Res., 30: 1197 (1979).


1980 ◽  
Vol 30 (1) ◽  
pp. 135-152 ◽  
Author(s):  
J. D. Wood ◽  
H. J. H. MacFie ◽  
R. W. Pomeroy ◽  
D. J. Twinn

ABSTRACTIn order to investigate the effects of type of breed on carcass composition, an examination was made of 361 lambs from four breeds: Clun Forest and Colbred (termed ewe breeds); and Suffolk and Hampshire (termed ram breeds). The animals were in four carcass weight groups averaging 15, 17, 19 and 21 kg.Percentage subcutaneous fat was influenced more by carcass weight than by breed, whereas both carcass weight and breed had similar effects on percentage lean. At the mean carcass weight of 18 kg, Colbreds, the leanest breed, had a similar value for percentage lean (about 57 % of carcass tissue weight) to the carcasses over all breeds weighing 15 kg; and Cluns, the fattest breed, had a similar value (about 54%) to those weighing 21 kg. Since the ram breeds were intermediate in composition between the two ewe breeds there was no effect of type of breed on carcass composition. The breed differences were related to eventual mature size and to the stage of maturity at each carcass weight, as judged by body length and bone weight measurements. However, Colbreds were bigger and leaner than published estimates of their mature weight suggested. Humerus weight was a good predictor of lean or total fat weight, explaining 83 % ofvariation when used as a predictor along with carcass weight.Type of breed had a marked effect on internal fat deposition, the ewe breeds having heavier weights of both kidney knob and channel fat (KKCF) and caul fat (omental fat) than the ram breeds; and on the length oflimb bones, the ewe breeds having longer but thinner bones than the ram breeds. The order of the relative growth of the tissues and fat depots was: subcutaneous fat > caul fat > KKCF > intermuscular fat > lean > bone. Therefore, the internal fat depots were later maturing than intermuscular fat.The percentage of prime cuts in the carcass was not affected by carcass weight. Colbreds had significantly lower values than the other breeds. Suffolks had the lowest lean to bone ratio.


1990 ◽  
Vol 51 (3) ◽  
pp. 489-495 ◽  
Author(s):  
S. J. Porter ◽  
M. G. Owen ◽  
S. J. Page ◽  
A. V. Fisher

ABSTRACTForty-nine bulls, 27 Limousin × Friesian and 22 Charolais × Friesian, were evaluated and slaughtered in four batches of about equal size over 4 weeks. Each batch was of one breed. Age, live weight at evaluation and subjective assessments of fatness and conformation were recorded together with fat and muscle measurements by the Delphi, Meritronics, Scanogram, Vetscan, Kaijo Denki, Warren and the Velocity of Sound ultrasonic machines. Experienced operators were used to assess the performance of machine/operator combinations likely to be achieved in bull performance testing in the field. Fat thicknesses and areas, and m. longissimus areas were taken at the 10th rib and 13th rib, and 3rd lumbar regions by most machines. For the Delphi and Meritronics machines, fat thicknesses only were taken; for the Velocity of Sound machine, time interval measurements and anatomical distances were taken at the shoulder, mid back, lumbar and hind limb regions. The left side of each carcass was fully separated into lean, subcutaneous fat, intermuscular fat, bone and waste. All measurements were examined as potential predictors of carcass composition in step-wise regression in a model which included week of evaluation, breed and live weight at evaluation as the first independent variable. On the whole, scanning machines had a higher precision than A-mode machines, with the Velocity of Sound machine achieving the highest precision for carcass lean (g/kg) (residual s.d. = 13·0) and fat (g/kg) (residual s.d. = 14·1). None of the linear and area measurements taken on the carcass achieved the degree of precision of the Velocity of Sound, Scanogram and Vetscan machines.


1994 ◽  
Vol 58 (1) ◽  
pp. 41-47 ◽  
Author(s):  
D. C. Patterson ◽  
C. A. Moore ◽  
R. W. J. Steen

AbstractBulls (½ Blonde d'Aquitaine ⅜ Charolais) were used in a 2 × 3 factorial design experiment with two planes of nutrition in the finishing period and three slaughter weights. High and low planes of nutrition were based on diets with similar forage to concentrate ratio (0·40 of dry matter (DM)) offered ad libitum or at 0·78 of ad libitum DM intake at equal live weight respectively. The target slaughter live weights were 550, 625 and 700 kg. Twelve bulls were taken to each slaughter point and an additional five animals were killed as a pre-experimental slaughter group. Mean initial live weight was 412 (s.e. 5·3) kg at a mean age of 342 (s.e. 2·5) days. No significant interactions were found between the main factors. For the high and low planes, live-weight and estimated carcass gains were 1251 and 989 (s.e. 47·7), and 816 and 668 (s.e. 35·3) g/day respectively, the reduction in gains being similar to the proportional degree of nutritional restriction. Plane of nutrition had no effect on live-weight or carcass gain per unit of energy intake. The low plane of nutrition produced significant decreases in body cavity fat depots, subcutaneous fat in the sample joint and increased the proportions of both saleable beef and high-priced joints in the carcass.With increase in slaughter weight, energy intake per unit of live weight0·75 and rates of both live-weight and carcass gain tended to decline. The dressing proportions were 583,579 and 609 (s.e. 9·1) g/kg for the slaughter live weights of 550, 625 and 700 kg. Carcass conformation improved while fat depots in the body cavity and estimated concentration of separable fat in the carcass increased with increase in slaughter weight, and both estimated lean and bone concentrations decreased. Forequarter as a proportion of total side tended to increase with increase in slaughter weight. Slaughter weight had no effect on concentration of saleable meat or ultimate pH of carcass muscle. It is concluded that bulls of this genotype can be taken to high slaughter weights on diets having a relatively high proportion of forage as grass silage, with high rates of growth and acceptable carcass leanness.


1990 ◽  
Vol 50 (1) ◽  
pp. 141-153 ◽  
Author(s):  
N. D. Cameron

ABSTRACTDuroc and halothane negative British Landrace boars and gilts were performance tested on ad libitum or restricted feeding regimes, with like-sexed non-littermate groups of one, two, three or four pigs per pen. There was a total of 320 pigs with 20 litter groups per breed with four boars and four gilts per litter group. Within each feeding regime, a boar and a gilt from each litter were tested on one of two diets in 1986, for each of the four combinations, and pigs were tested similarly for two other diets in 1987. Carcass composition was determined by half-carcass dissection of 160 pigs allocated between treatments.There was a breed × sex interaction for growth and performance traits for pigs fed ad libitum. Duroc boars were faster growing and more efficient than Landrace boars, but Duroc gilts grew more slowly and were less efficient than Landrace gilts. On restricted feeding, Duroc pigs were more efficient than Landrace pigs.At constant slaughter weight, Duroc pigs had less subcutaneous fat but more intermuscular fat. Although they had less separable fat in the carcass, Duroc pigs were not leaner as weights of bone, skin, head, feet and tail were heavier than for Landrace pigs.Group penning and group feeding of pigs may have enhanced competition effects resulting in positive genetic and phenotypic correlations between growth rate and backfat depths on both feeding regimes.The positive genetic correlation between growth rate and fat deposition resulted in a negative genetic correlation between growth rate and carcass lean content and a lower genetic correlation with lean tissue growth rate than in other studies.


1991 ◽  
Vol 52 (3) ◽  
pp. 465-475 ◽  
Author(s):  
R. W. J. Steen

ABSTRACTTwo experiments have been carried out to examine the effects of the level of protein supplementation given with grass silage-based diets on the performance and carcass composition of bulls, and to compare diets based on silage and dried forage. The five treatments used consisted of grass silage offered ad libitum and supplemented with 2·5 kg dry matter (DM) of barley-based concentrates containing (1) zero (2) 200 (3) 400 and (4) 600 g soya-bean meal per kg and (5) artificially dried grass and hay supplemented with 3·2 kg concentrate DM. The silages used in both experiments were well preserved, containing on average 200 g DM per kg; 140 g crude protein (CP) per kg DM; 63 g ammonia-nitrogen per kg total N and 731 g digestible organic matter per kg DM. The bulls were of late-maturing breed type and were initially 12 months old and 412 and 405 kg live weight in experiments 1 and 2 respectively. For treatments 1, 2, 4 and 5 in experiment 1 respectively (treatment 3 was not used) total DM intakes were 8·3, 8·3, 81 and 110 (s.e. 0·21) kg/day; CP intakes 1063, 1271, 1664 and 1539g/day; metabolizable energy intakes (MEI) 98, 99, 96 and 87 MJ/day; carcass weights 317, 316, 317 and 316 (s.e. 3·2) kg; carcass saleable meat concentrations 714, 712, 718 and 716 (s.e. 5·8) g/kg and carcass fat trims 73, 81, 73 and 68 (s.e. 3·9) g/kg. In experiment 2 for treatments 1 to 5 respectively total DM intakes were 8·3, 8·5, 8·3, 8·4 and 11·2 (s.e. 0·26) kg/day; CP intakes were 1090, 1329, 1504, 1720 and 1561 g/day; MEI 102, 106, 103, 103 and 94 MJ/day; carcass weights 318, 331, 330, 327 and 321 (s.e. 3·3) kg; carcass saleable meat concentrations 726, 721, 725, 721 and 732 (s.e. 60) g/kg and fat trims 71, 77, 78, 80 and 64 (s.e. 4·5) g/kg. It is concluded that protein supplementation of a silage-based diet did not affect performance or carcass fatness in experiment 1 or carcass fatness in experiment 2, but including 200 or 400 g soya-bean meal per kg concentrate increased performance in experiment 2. Animals given silage produced fatter carcasses than those given dried forage in experiment 2 but not in experiment 1.


1980 ◽  
Vol 60 (4) ◽  
pp. 843-850 ◽  
Author(s):  
S. D. M. JONES ◽  
M. A. PRICE ◽  
R. T. BERG

A trial is reported comparing half-carcass fat partitioning in 12 bulls and 12 heifers each of two breed-types: Hereford (HE) and Dairy Synthetic (DY). These animals were serially slaughtered from weaning (163 ± 15.1 (SE) days) to approximately 16 mo of age. After slaughter, one side of each carcass was broken into eight wholesale cuts, which were separated into fat (subcutaneous fat (SF), intermuscular fat (IF) and body cavity fat (BCF)), muscle and bone. The partition of fat was investigated by examining the development of each depot relative to two independent variates (fat percent and fat weight in the side), using the allometric equation. Relative to fat percent in the side, the regression coefficients for depot fat accumulation were all homogeneous for sex, and only one coefficient (SF in the forequarter) was significantly different (P < 0.05) for breed. Relative to fat weight in a side, the regression coefficients for both breed and sex showed several significant differences. Adjusted means at constant total fat weight showed HE animals to have more SF, and less IF than DY animals. There were no significant differences in the adjusted means for sex.


Sign in / Sign up

Export Citation Format

Share Document