scholarly journals Derivation and validation of simple anthropometric equations to predict adipose tissue mass and total fat mass with MRI as the reference method

2015 ◽  
Vol 114 (11) ◽  
pp. 1852-1867 ◽  
Author(s):  
Yasmin Y. Al-Gindan ◽  
Catherine R. Hankey ◽  
Lindsay Govan ◽  
Dympna Gallagher ◽  
Steven B. Heymsfield ◽  
...  

AbstractThe reference organ-level body composition measurement method is MRI. Practical estimations of total adipose tissue mass (TATM), total adipose tissue fat mass (TATFM) and total body fat are valuable for epidemiology, but validated prediction equations based on MRI are not currently available. We aimed to derive and validate new anthropometric equations to estimate MRI-measured TATM/TATFM/total body fat and compare them with existing prediction equations using older methods. The derivation sample included 416 participants (222 women), aged between 18 and 88 years with BMI between 15·9 and 40·8 (kg/m2). The validation sample included 204 participants (110 women), aged between 18 and 86 years with BMI between 15·7 and 36·4 (kg/m2). Both samples included mixed ethnic/racial groups. All the participants underwent whole-body MRI to quantify TATM (dependent variable) and anthropometry (independent variables). Prediction equations developed using stepwise multiple regression were further investigated for agreement and bias before validation in separate data sets. Simplest equations with optimalR2and Bland–Altman plots demonstrated good agreement without bias in the validation analyses: men: TATM (kg)=0·198 weight (kg)+0·478 waist (cm)−0·147 height (cm)−12·8 (validation:R20·79, CV=20 %, standard error of the estimate (SEE)=3·8 kg) and women: TATM (kg)=0·789 weight (kg)+0·0786 age (years)−0·342 height (cm)+24·5 (validation:R20·84, CV=13 %, SEE=3·0 kg). Published anthropometric prediction equations, based on MRI and computed tomographic scans, correlated strongly with MRI-measured TATM: (R20·70−0·82). Estimated TATFM correlated well with published prediction equations for total body fat based on underwater weighing (R20·70–0·80), with mean bias of 2·5–4·9 kg, correctable with log-transformation in most equations. In conclusion, new equations, using simple anthropometric measurements, estimated MRI-measured TATM with correlations and agreements suitable for use in groups and populations across a wide range of fatness.

2004 ◽  
Vol 286 (1) ◽  
pp. R61-R70 ◽  
Author(s):  
Eva L. Lacy ◽  
Timothy J. Bartness

Direct tests of the hypothesized total body fat regulatory system have been accomplished by partial surgical lipectomy. This usually results in the restoration of the lipid deficit through compensatory increases in nonexcised white adipose tissue (WAT) masses of ground squirrels, laboratory rats, and mice, as well as Siberian and Syrian hamsters. We challenged this hypothesized total body fat regulatory system by testing the response of Siberian hamsters to 1) lipid deficits [lipectomy; primarily bilateral epididymal WAT (EWAT) removal], 2) lipid surfeits (addition of donor EWAT with no lipectomy), 3) no net change in lipid [EWAT or inguinal WAT (IWAT) lipectomy with the excised fat replaced to a new location (autologous)], 4) lipectomy with the same pad (EWAT lipectomy only) added from a sibling (nonautologous), and 5) sham surgeries for each treatment. Food intake generally was not affected. Body mass was not affected across all treatments. Grafts ∼3 mo later had normal appearance both macro- and microscopically and were revascularized. The normal lipectomy-induced compensatory increases in nonexcised WAT masses surprisingly were exaggerated with autologous EWAT transplants, but not for autologous IWAT or nonautologous EWAT transplants. There was no compensatory decrease in native WAT masses with nonautologous EWAT additions. Collectively, only lipectomy triggered reparation of the lipid deficit, but the other manipulations did not, suggesting a system biased toward rectifying decreases in lipid or an inability of the hypothesized total body fat regulatory system to recognize WAT transplants.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177175 ◽  
Author(s):  
Michelle G. Swainson ◽  
Alan M. Batterham ◽  
Costas Tsakirides ◽  
Zoe H. Rutherford ◽  
Karen Hind

1998 ◽  
Vol 85 (5) ◽  
pp. 1778-1785 ◽  
Author(s):  
E. Louise Thomas ◽  
Nadeem Saeed ◽  
Joseph V. Hajnal ◽  
Audrey Brynes ◽  
Anthony P. Goldstone ◽  
...  

In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy.


2009 ◽  
Vol 36 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Shufeng Lei ◽  
Feiyan Deng ◽  
Peng Xiao ◽  
Kai Zhong ◽  
Hongyi Deng ◽  
...  

2005 ◽  
Vol 289 (2) ◽  
pp. R514-R520 ◽  
Author(s):  
Haifei Shi ◽  
Timothy J. Bartness

The sensory innervation of white adipose tissue (WAT) is indicated by the labeling of sensory bipolar neurons in the dorsal root ganglion after retrograde dye placement into WAT. In addition, immunoreactivity (ir) for sensory-associated neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P in WAT pads also supports the notion of WAT sensory innervation. The function of this sensory innervation is unknown but could involve conveying the degree of adiposity to the brain. In tests of total body fat regulation, partial surgical lipectomy triggers compensatory increases in the mass of nonexcised WAT, ultimately resulting in restoration of total body fat levels in Siberian hamsters and other animals. The signal that triggers this compensation is unknown but could involve disruption of WAT sensory innervation that accompanies lipectomy. Therefore, a local and selective sensory denervation was accomplished by microinjecting the sensory nerve neurotoxin capsaicin bilaterally into epididymal WAT (EWAT) of Siberian hamsters, whereas controls received vehicle injections. Additional hamsters had bilateral EWAT lipectomy (EWATx) or sham lipectomy. As seen previously, EWATx resulted in significantly increased retroperitoneal WAT (RWAT) and inguinal WAT (IWAT) masses. Capsaicin treatment significantly decreased CGRP- but not tyrosine hydroxylase-ir, attesting to the diminished and selective sensory innervation. Capsaicin-treated hamsters also had increased RWAT and, to a lesser degree, IWAT mass largely mimicking the WAT mass increases seen after lipectomy. Collectively, these data suggest the possibility that information related to peripheral lipid stores may be conveyed to the brain via the sensory innervation of WAT.


2008 ◽  
Vol 93 (11) ◽  
pp. 4486-4493 ◽  
Author(s):  
Anders Rinnov Nielsen ◽  
Pernille Hojman ◽  
Christian Erikstrup ◽  
Christian Philip Fischer ◽  
Peter Plomgaard ◽  
...  

Objective: IL-15 decreases lipid deposition in preadipocytes and decreases the mass of white adipose tissue in rats, indicating that IL-15 may take part in regulating this tissue. IL-15 is expressed in human skeletal muscle and skeletal muscle may be a source of plasma IL-15 and in this way regulate adipose tissue mass. Design: The relation between skeletal muscle IL-15 mRNA expression, plasma IL-15, and adipose tissue mass was studied in 199 humans divided into four groups on the basis of obesity and type 2 diabetes. Furthermore, using a DNA electrotransfer model, we assessed the effect of IL-15 overexpression in skeletal muscle of mice. Results: In humans, multiple regression analysis showed a negative association between plasma IL-15 and total fat mass (P < 0.05), trunk fat mass (P < 0.01), and percent fat mass (P < 0.05), independent of type 2 diabetes. Negative associations were also found between muscle IL-15 mRNA and obesity parameters. IL-15 overexpression in skeletal muscle of mice reduced trunk fat mass but not sc fat mass. Conclusions: Our results indicate that IL-15 may be a regulator of trunk fat mass.


Sign in / Sign up

Export Citation Format

Share Document