Population dynamics of pine woolly aphid, Pineus pini (Gmelin) (Hemiptera: Adelgidae), in Kenya

1980 ◽  
Vol 70 (3) ◽  
pp. 483-490 ◽  
Author(s):  
A. M. Mailu ◽  
C. P. M. Khamala ◽  
D. J. W. Rose

AbstractThe population dynamics of Pineus pini (Gmel.) was examined in two locations in the Kenya Highlands where the mean annual precipitation ranges from 620 to 1400 mm. Variations in population densities were related to rainfall. Generally, there was a marked decrease in population during the three months of heavy rainfall in March to May and a significant increase during dry weather from August to October. This was followed by a slight decrease in the rate of population build-up, until the long rains in April again resulted in another population collapse. Nine species of predatory insects were identified, and population fluctuations of the most common of these, Exochomus spp., was studied. Predators seemed to remove about 12% of the aphid population. Other mortality factors included heat and crawler dispersion. The greatest mortality occurred early in the life-cycle and was mainly due to eggs and crawlers being washed off the host-tree by rain.

1977 ◽  
Vol 28 (4) ◽  
pp. 417 ◽  
Author(s):  
R Marchant ◽  
WD Williams

Quantitative samples of P. zietziana were taken monthly for two years from Pink Lake and Lake Cundare. Shrimps were usually contagiously distributed. To reduce error, samples were stratified resulting in confidence limits of 40-50% for the mean population density. Despite this variability, stable trends emerged, and variation was not so great as to mask significant differences. Length-frequency analyses distinguished cohorts; a regression was established between length and dry weight, enabling growth to be estimated from samples. By combining growth with population densities in Allen curves, production was computed. In Pink Lake and Lake Cundare mean pro- duction was 11.3 and 1.0 g dry weight m-2 year-1 respectively. Generally there were two or three generations per year, but time and extent of recruitment were not predictable. Each generation suffered continuous mortality, the death of young shrimps accounting for most of the production. This mortality remains unexplained; there are no significant predators and salinity and temperature stress would occur only during summer.


2017 ◽  
Vol 8 ◽  
pp. 59 ◽  
Author(s):  
E. T. Kapatos ◽  
E.T. Stratopoulou

A series of life-tables for the population of Saisselia oleae (Oliv.) (Homoptera: Coccidae) during five yearly generations (1981-86) were constructed in Corfu. Key-factor analysis carried out on the life-table data indicated that mortality of young stages during summer, caused mainly by the high temperatures, and mortality during spring, caused mainly by predation, determine total population change within each generation. These two mortality factors are the predominant factors of the population dynamics of S. oleae determining population fluctuations. The other mortality factors of the population system of S. oleae were less important. Summer parasites and egg predators, in particular, do not play any significant role on the population dynamics of S. oleae.


2013 ◽  
Vol 26 (20) ◽  
pp. 7929-7937 ◽  
Author(s):  
Elsa Bernard ◽  
Philippe Naveau ◽  
Mathieu Vrac ◽  
Olivier Mestre

Abstract One of the main objectives of statistical climatology is to extract relevant information hidden in complex spatial–temporal climatological datasets. To identify spatial patterns, most well-known statistical techniques are based on the concept of intra- and intercluster variances (like the k-means algorithm or EOFs). As analyzing quantitative extremes like heavy rainfall has become more and more prevalent for climatologists and hydrologists during these last decades, finding spatial patterns with methods based on deviations from the mean (i.e., variances) may not be the most appropriate strategy in this context of studying such extremes. For practitioners, simple and fast clustering tools tailored for extremes have been lacking. A possible avenue to bridging this methodological gap resides in taking advantage of multivariate extreme value theory, a well-developed research field in probability, and to adapt it to the context of spatial clustering. In this paper, a novel algorithm based on this plan is proposed and studied. The approach is compared and discussed with respect to the classical k-means algorithm throughout the analysis of weekly maxima of hourly precipitation recorded in France (fall season, 92 stations, 1993–2011).


1992 ◽  
Vol 70 (10) ◽  
pp. 2005-2008 ◽  
Author(s):  
Robert Hall ◽  
Lana Gay Phillips

Evidence is presented that population dynamics of Fusarium solani f.sp. phaseoli in soil depend on the effects of crop sequence and rainfall on parasitic activities of the pathogen. In a rotation trial started in 1978 and conducted over 14 years, population densities (colony-forming units/g) of the fungus in soil remained below 50 in treatments (fallow, repeated corn, repeated soybean) where the preferred host plant (common bean, Phaseolus vulgaris) was not grown. Where bean was grown every 3rd year or every year, population densities reached 475 and 660, respectively, by 1984. Thereafter, population densities of the fungus fluctuated widely from year to year in both rotation and repeated bean treatments. In the rotation treatment, peaks in population density of the pathogen coincided with the years of bean production. In repeated bean plots between 1985 and 1991, population density of the fungus in June was significantly correlated (r = 0.77, p = 0.04) with total rainfall received during the previous summer (June–August). It is postulated that higher rainfall during the growing season of the bean crop stimulated root growth and root infection, leading to the accumulation of higher levels of potential inoculum in infected tissue and the release of higher levels of inoculum into the soil by the following June. Key words: Fusarium solani f.sp. phaseoli, bean, Phaseolus vulgaris, rainfall, crop rotation.


1972 ◽  
Vol 104 (8) ◽  
pp. 1197-1207 ◽  
Author(s):  
R. F. Morris

AbstractThe number of predators inhabiting nests of Hyphantria cunea Drury was recorded annually for 13 years in four areas in New Brunswick and two areas on the coast of Nova Scotia. The most common groups were the pentatomids and spiders, which sometimes reproduced within the nests, but the mean number per nest was low in relation to the number of H. cunea larvae in the colonies. The rate of predation on fifth-instar larvae was low. Small or timid predators appeared to prey largely on moribund larvae or small saprophagans during the principal defoliating instars of H. cunea.No relationship could be detected between the number of larvae reaching the fifth instar and the number of predators in the colony; nor could any functional or numerical response of the predators to either the initial number of larvae per colony or the population density of colonies be found. It is concluded that the influence of the nest-inhabiting predators is small and relatively stable, and may be treated as a constant in the development of models to explain the population dynamics of H. cunea.H. cunea is a pest in parts of Europe and Asia, where it has been accidentally introduced from North America. The introduction to other continents of the North American predator, Podisus maculiventiis (Say), is discussed briefly.


2021 ◽  
Vol 10 (3) ◽  
pp. 193
Author(s):  
Zhaoqi Wang ◽  
Xiang Liu ◽  
Hao Wang ◽  
Kai Zheng ◽  
Honglin Li ◽  
...  

The Three-River Source Region (TRSR) is vital to the ecological security of China. However, the impact of global warming on the dynamics of vegetation along the elevation gradient in the TRSR remains unclear. Accordingly, we used multi-source remote sensing vegetation indices (VIs) (GIMMS (Global Inventory Modeling and Mapping Studies) LAI (Leaf Area Index), GIMMS NDVI (Normalized Difference Vegetation Index), GLOBMAP (Global Mapping) LAI, MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index), MODIS NDVI, and MODIS NIRv (near-infrared reflectance of vegetation)) and digital elevation model data to study the changes of VGEG (Vegetation Greenness along the Elevation Gradient) in the TRSR from 2001 to 2016. Results showed that the areas with a positive correlation of vegetation greenness and elevation accounted for 36.34 ± 5.82% of the study areas. The interannual variations of VGEG showed that the significantly changed regions were mainly observed in the elevation gradient of 4–5 km. The VGEG was strongest in the elevation gradient of 4–5 km and weakest in the elevation gradient of >5 km. Correlation analysis showed that the mean annual temperature was positively correlated with VIs, and the effect of the mean annual precipitation on VIs was more obvious at low altitude than in high altitude. This study contributes to our understanding of the VGEG variation in the TRSR under global climate variation and also helps in the prediction of future carbon cycle patterns.


2011 ◽  
Vol 101 (1-2) ◽  
pp. 5-14 ◽  
Author(s):  
Douglas F Peiró ◽  
Fernando L Mantelatto

The Pinnotheridae family is one of the most diverse and complex groups of brachyuran crabs, many of them symbionts of a wide variety of invertebrates. The present study describes the population dynamics of the pea crab Austinixa aidae (Righi, 1967), a symbiont associated with the burrows of the ghost shrimp Callichirus major (Say, 1818). Individuals (n = 588) were collected bimonthly from May, 2005 to September, 2006 along a sandy beach in the southwestern Atlantic, state of São Paulo, Brazil. Our data indicated that the population demography of A. aidae was characterized by a bimodal size-frequency distribution (between 2.0 and 4.0 mm and between 8.0 and 9.0 mm CW) that remained similar throughout the study period. Sex ratio does not differ significantly from 1:1 (p > 0.05), which confirms the pattern observed in other symbiontic pinnotherids. Density values (1.72 ± 1.34 ind. • ap.-1) are in agreement with those found for other species of the genus. The mean symbiosis incidence (75.6%) was one of the highest among species of the Pinnotheridae family, but it was the lowest among the three studied species of the genus. Recruitment pattern was annual, beginning in May and peaking in July, in both years, after the peak of ovigerous females in the population (from March to May). Our findings describe ecological and biological aspects of A. aidae similar to those of other species of this genus, even from different geographic localities.


2020 ◽  
Author(s):  
Anudeep Surendran ◽  
Michael Plank ◽  
Matthew Simpson

AbstractAllee effects describe populations in which long-term survival is only possible if the population density is above some threshold level. A simple mathematical model of an Allee effect is one where initial densities below the threshold lead to population extinction, whereas initial densities above the threshold eventually asymptote to some positive carrying capacity density. Mean field models of population dynamics neglect spatial structure that can arise through short-range interactions, such as short-range competition and dispersal. The influence of such non mean-field effects has not been studied in the presence of an Allee effect. To address this we develop an individual-based model (IBM) that incorporates both short-range interactions and an Allee effect. To explore the role of spatial structure we derive a mathematically tractable continuum approximation of the IBM in terms of the dynamics of spatial moments. In the limit of long-range interactions where the mean-field approximation holds, our modelling framework accurately recovers the mean-field Allee threshold. We show that the Allee threshold is sensitive to spatial structure that mean-field models neglect. For example, we show that there are cases where the mean-field model predicts extinction but the population actually survives and vice versa. Through simulations we show that our new spatial moment dynamics model accurately captures the modified Allee threshold in the presence of spatial structure.


2012 ◽  
Vol 9 (12) ◽  
pp. 18039-18081 ◽  
Author(s):  
K. S. Meyer ◽  
M. Bergmann ◽  
T. Soltwedel

Abstract. Epibenthic megafauna play an important role in the deep-sea environment and contribute significantly to benthic biomass, but their population dynamics are still understudied. We used a towed deep-sea camera system to assess the population densities of epibenthic megafauna in 2002, 2007 and 2012 at the shallowest station (HG I, ~ 1300 m) of the deep-sea observatory HAUSGARTEN, in the eastern Fram Strait. Our results indicate that the overall density of megafauna was significantly lower in 2007 than in 2002, but was significantly higher in 2012, resulting in overall greater megafaunal density in 2012. Different species showed different patterns in population density, but the relative proportions of predator/scavengers and suspension-feeding individuals were both higher in 2012. Variations in megafaunal densities and proportions are likely due to variation in food input to the sea floor, which decreased slightly in the years preceding 2007 and was greatly elevated in the years preceding 2012. Both average evenness and diversity increased over the time period studied, which indicates that HG I may be food-limited and subject to bottom-up control. The varying dynamics of different species may have been caused by differential capacities of populations to respond to increased food input through either recruitment or migration.


2019 ◽  
Author(s):  
Reinaldo García-García ◽  
Arthur Genthon ◽  
David Lacoste

Using a population dynamics inspired by an ensemble of growing cells, a set of fluctuation theorems linking observables measured at the lineage and population levels are derived. One of these relations implies inequalities comparing the population doubling time with the mean generation time at the lineage or population levels. We argue that testing these inequalities provides useful insights into the underlying mechanism controlling the division rate in such branching processes.


Sign in / Sign up

Export Citation Format

Share Document