scholarly journals Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China

2021 ◽  
Vol 10 (3) ◽  
pp. 193
Author(s):  
Zhaoqi Wang ◽  
Xiang Liu ◽  
Hao Wang ◽  
Kai Zheng ◽  
Honglin Li ◽  
...  

The Three-River Source Region (TRSR) is vital to the ecological security of China. However, the impact of global warming on the dynamics of vegetation along the elevation gradient in the TRSR remains unclear. Accordingly, we used multi-source remote sensing vegetation indices (VIs) (GIMMS (Global Inventory Modeling and Mapping Studies) LAI (Leaf Area Index), GIMMS NDVI (Normalized Difference Vegetation Index), GLOBMAP (Global Mapping) LAI, MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index), MODIS NDVI, and MODIS NIRv (near-infrared reflectance of vegetation)) and digital elevation model data to study the changes of VGEG (Vegetation Greenness along the Elevation Gradient) in the TRSR from 2001 to 2016. Results showed that the areas with a positive correlation of vegetation greenness and elevation accounted for 36.34 ± 5.82% of the study areas. The interannual variations of VGEG showed that the significantly changed regions were mainly observed in the elevation gradient of 4–5 km. The VGEG was strongest in the elevation gradient of 4–5 km and weakest in the elevation gradient of >5 km. Correlation analysis showed that the mean annual temperature was positively correlated with VIs, and the effect of the mean annual precipitation on VIs was more obvious at low altitude than in high altitude. This study contributes to our understanding of the VGEG variation in the TRSR under global climate variation and also helps in the prediction of future carbon cycle patterns.

2018 ◽  
Vol 23 ◽  
pp. 00030 ◽  
Author(s):  
Anshu Rastogi ◽  
Subhajit Bandopadhyay ◽  
Marcin Stróżecki ◽  
Radosław Juszczak

The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1°C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices.


2021 ◽  
Vol 13 (17) ◽  
pp. 9897
Author(s):  
Jinhui Wu ◽  
Haoxin Li ◽  
Huawei Wan ◽  
Yongcai Wang ◽  
Chenxi Sun ◽  
...  

An explicit analysis of the impact for the richness of species of the vegetation phenological characteristics calculated from various remote sensing data is critical and essential for biodiversity conversion and restoration. This study collected long-term the Normalized Difference Vegetation Index (NDVI), the Leaf Area Index (LAI), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and the Fractional Vegetation Cover (FVC), and calculated the six vegetation phenological characteristic parameters: the mean of the growing season, the mean of the mature season, the mean of the withered season, the annual difference value, the annual cumulative value, and the annual standard deviation in the Xinjiang Uygur Autonomous Region. The relationships between the vegetation phenological characteristics and the species richness of birds and mammals were analyzed in spatial distribution. The main findings include: (1) The correlation between bird diversity and vegetation factors is greater than that of mammals. (2) For remote sensing data, FAPAR is the most important vegetation parameter for both birds and mammals. (3) For vegetation phenological characteristics, the annual cumulative value of the LAI is the most crucial vegetation phenological parameter for influencing bird diversity distribution, and the annual difference value of the NDVI is the most significant driving factor for mammal diversity distribution.


2019 ◽  
Vol 11 (6) ◽  
pp. 689 ◽  
Author(s):  
Kun Qiao ◽  
Wenquan Zhu ◽  
Zhiying Xie ◽  
Peixian Li

The leaf area index (LAI) is not only an important parameter used to describe the geometry of vegetation canopy but also a key input variable for ecological models. One of the most commonly used methods for LAI estimation is to establish an empirical relationship between the LAI and the vegetation index (VI). However, the LAI-VI relationships had high seasonal variability, and they differed among phenophases and VIs. In this study, the LAI-VI relationships in different phenophases and for different VIs (i.e., the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and near-infrared reflectance of vegetation (NIRv)) were investigated based on 82 site-years of LAI observed data and the Moderate Resolution Imaging Spectroradiometer (MODIS) VI products. Significant LAI-VI relationships were observed during the vegetation growing and declining periods. There were weak LAI-VI relationships (p > 0.05) during the flourishing period. The accuracies for the LAIs estimated with the piecewise LAI-VI relationships based on different phenophases were significantly higher than those estimated based on a single LAI-VI relationship for the entire vegetation active period. The average root mean square error (RMSE) ± standard deviation (SD) value for the LAIs estimated with the piecewise LAI-VI relationships was 0.38 ± 0.13 (based on the NDVI), 0.41 ± 0.13 (based on the EVI) and 0.41 ± 0.14 (based on the NIRv), respectively. In comparison, it was 0.46 ± 0.13 (based on the NDVI), 0.55 ± 0.15 (based on the EVI) and 0.55 ± 0.15 (based on the NIRv) for those estimated with a single LAI-VI relationship. The performance of the three VIs in estimating the LAI also varied among phenophases. During the growing period, the mean RMSE ± SD value for the estimated LAIs was 0.30 ± 0.11 (LAI-NDVI relationships), 0.37 ± 0.11 (LAI-EVI relationships) and 0.36 ± 0.13 (LAI-NIRv relationships), respectively, indicating the NDVI produced significantly better LAI estimations than those from the other two VIs. In contrast, the EVI produced slightly better LAI estimations than those from the other two VIs during the declining period (p > 0.05), and the mean RMSE ± SD value for the estimated LAIs was 0.45 ± 0.16 (LAI-NDVI relationships), 0.43 ± 0.23 (LAI-EVI relationships) and 0.45 ± 0.25 (LAI-NIRv relationships), respectively. Hence, the piecewise LAI-VI relationships based on different phenophases were recommended for the estimations of the LAI instead of a single LAI-VI relationship for the entire vegetation active period. Furthermore, the optimal VI in each phenophase should be selected for the estimations of the LAI according to the characteristics of vegetation growth.


2013 ◽  
Vol 33 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antonio R. Formaggio ◽  
José C. N. Epiphanio

View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


2018 ◽  
Vol 15 (12) ◽  
pp. 3703-3716 ◽  
Author(s):  
Alexandre A. Renchon ◽  
Anne Griebel ◽  
Daniel Metzen ◽  
Christopher A. Williams ◽  
Belinda Medlyn ◽  
...  

Abstract. Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800 mm and a mean annual temperature of 18 ∘C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225 g C m−2 yr−1 on average, with a standard deviation of 108 g C m−2 yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2 = 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.


2020 ◽  
Vol 12 (18) ◽  
pp. 2982 ◽  
Author(s):  
Christelle Gée ◽  
Emmanuel Denimal

In precision agriculture, the development of proximal imaging systems embedded in autonomous vehicles allows to explore new weed management strategies for site-specific plant application. Accurate monitoring of weeds while controlling wheat growth requires indirect measurements of leaf area index (LAI) and above-ground dry matter biomass (BM) at early growth stages. This article explores the potential of RGB images to assess crop-weed competition in a wheat (Triticum aestivum L.) crop by generating two new indicators, the weed pressure (WP) and the local wheat biomass production (δBMc). The fractional vegetation cover (FVC) of the crop and the weeds was automatically determined from the images with a SVM-RBF classifier, using bag of visual word vectors as inputs. It is based on a new vegetation index called MetaIndex, defined as a vote of six indices widely used in the literature. Beyond a simple map of weed infestation, the map of WP describes the crop-weed competition. The map of δBMc, meanwhile, evaluates the local wheat above-ground biomass production and informs us about a potential stress. It is generated from the wheat FVC because it is highly correlated with LAI (r2 = 0.99) and BM (r2 = 0.93) obtained by destructive methods. By combining these two indicators, we aim at determining whether the origin of the wheat stress is due to weeds or not. This approach opens up new perspectives for the monitoring of weeds and the monitoring of their competition during crop growth with non-destructive and proximal sensing technologies in the early stages of development.


2019 ◽  
Vol 11 (21) ◽  
pp. 2558 ◽  
Author(s):  
Emily Myers ◽  
John Kerekes ◽  
Craig Daughtry ◽  
Andrew Russ

Agricultural monitoring is an important application of earth-observing satellite systems. In particular, image time-series data are often fit to functions called shape models that are used to derive phenological transition dates or predict yield. This paper aimed to investigate the impact of imaging frequency on model fitting and estimation of corn phenological transition timing. Images (PlanetScope 4-band surface reflectance) and in situ measurements (Soil Plant Analysis Development (SPAD) and leaf area index (LAI)) were collected over a corn field in the mid-Atlantic during the 2018 growing season. Correlation was performed between candidate vegetation indices and SPAD and LAI measurements. The Normalized Difference Vegetation Index (NDVI) was chosen for shape model fitting based on the ground truth correlation and initial fitting results. Plot-average NDVI time-series were cleaned and fit to an asymmetric double sigmoid function, from which the day of year (DOY) of six different function parameters were extracted. These points were related to ground-measured phenological stages. New time-series were then created by removing images from the original time-series, so that average temporal spacing between images ranged from 3 to 24 days. Fitting was performed on the resampled time-series, and phenological transition dates were recalculated. Average range of estimated dates increased by 1 day and average absolute deviation between dates estimated from original and resampled time-series data increased by 1/3 of a day for every day of increase in average revisit interval. In the context of this study, higher imaging frequency led to greater precision in estimates of shape model fitting parameters used to estimate corn phenological transition timing.


Sign in / Sign up

Export Citation Format

Share Document