Host range and species diversity of Tephritidae of three plant formations in Western Burkina Faso

2020 ◽  
Vol 110 (6) ◽  
pp. 732-742
Author(s):  
Issaka Zida ◽  
Souleymane Nacro ◽  
Rémy Dabiré ◽  
Laura Moquet ◽  
Hélène Delatte ◽  
...  

AbstractIn Western Burkina Faso, the host range of fruit flies was evaluated in three plant formations between May 2017 and April 2019. Samples of 61 potential hosts were collected and incubated for fruit fly emergence. Twenty-seven hosts including cultivated and wild fruit were identified. Among cultivated fruit species, mango, and guava were the most infested while high infestation incidences were observed in the fruit of the indigenous plants Vitellaria paradoxa, Annona senegalensis, Sarcocephalus latifolius, and Saba senegalensis. Low infestation rates were observed in Anacardium occidentale, Citrus species, Opilia celtidifolia, and Cissus populnea. The highest infestation index (1648.57 flies kg−1) was observed from V. paradoxa. Eleven new host fruit infested with many fruit fly species are reported in Burkina Faso. A total of 18 fruit fly species were reared; Bactrocera dorsalis (42.94%), Ceratitis cosyra (29.93%), and Ceratitis silvestrii (22.33%) dominated those that emerged. Four fruit fly species have been detected for the first time in Burkina Faso. The main suitable fruit hosts are abundant and available from May through August during the rainy season and become rare and have low infestation from November to April during the dry season. This is the first study of its kind in the region. This study shows that the three plant formations had an impact on population dynamics of the three tephritid species of economic importance in Western Burkina Faso. This information should be integrated into the development of a fruit fly pests management strategy.

2020 ◽  
Vol 113 (5) ◽  
pp. 343-354 ◽  
Author(s):  
Issaka Zida ◽  
Souleymane Nacro ◽  
Rémy Dabiré ◽  
Irénée Somda

Abstract Fruit flies are significant insect pests, worldwide. Tephritid species diversity and their seasonal abundance were investigated over 2 yr (May 2017 to May 2019) in Western Burkina Faso. A mass trapping experiment consisting of 288 Tephri Trap types, operating with four types of parapheromones comprising methyl eugenol, terpinyl acetate, trimedlure, and cue lure and an insecticide (Dichlorvos), was used for attracting and killing insects. Plant formations including natural fallows, mango orchards, and agroforestry parks in each of the six study sites were selected for data collection. Twenty-nine tephritid species belonging to 10 genera were identified. Fourteen fruit fly species were identified for the first time in Burkina Faso. The genera Ceratitis MacLeay (Diptera : Tephritidae) and Dacus Fabricius (Diptera: Tephritidae) with, respectively, 14 and 7 species recorded were the most represented. The dominant species caught was the invasive Bactrocera dorsalis Hendel (Diptera: Tephritidae) followed by Ceratitis cosyra Walker (Diptera: Tephritidae) and Ceratitis silvestrii Bezzi (Diptera: Tephritidae). The fruit fly population density was very high during the rainy season, with peaks occurring in June or July. The fruit fly species were generally more abundant during the hot and rainy seasons than during the cold and dry seasons. The highest diversity was recorded in natural fallows, as compared with the mango orchards and agroforestry parks. Tephritid species found refuge in the mango orchards during the dry and cold periods. The results of that investigation may be used for developing a sustainable pest management strategy for commercial orchards.


2019 ◽  
Vol 109 (05) ◽  
pp. 649-658
Author(s):  
A. Monsia ◽  
G.S.B. Mègnigbèto ◽  
D. Gnanvossou ◽  
M.F. Karlsson

AbstractParasitoids, released in augmentative biological control programmes, which display a rapid host-location capacity, have a higher likelihood of successfully controlling target pest species. By learning to associate sensory cues to a suitable oviposition site, might parasitoids used as biological control agents, locate hosts more rapidly, and perhaps increase the efficacity of e.g. Tephritidae fruit fly management. We studied associative learning of Fopius arisanus (Hymenoptera: Braconidae) and tested its range of learning in natural and conditional hosts and host fruits, i.e. Bactrocera dorsalis, Zeugodacus cucurbitae, Ceratitis capitata and Ceratitis cosyra (Diptera: Tephritidae) and on fruits (papaya, tomato, banana). Naïve female F. arisanus were compared with experienced wasps, which had been offered infested and non-infested fruit, and been allowed to oviposit. Preferences for olfactory cues from infested fruits were thereafter assessed in a two-choice olfactometer. Naïve and trained parasitoids preference differed in general and non-responders to infested fruits were higher among naïve parasitoids. The trained wasps preferred the fruit infested in the training more than the control fruit, for all combination, except when C. cosyra infested the fruits, hence avoidance behavioural response was observed towards the odour of the infested fruit. Fopius arisanus was capable of behaviourally respond to the learned information, e.g. associative odour learning was achieved, yet limited depending on interaction level, fruit fly and fruit combination. To create F. arisanus preference of an associated odour, it might hence be needed to ensure oviposition in perceived suitable host and host fruit, for the parasitoid learning to become favourable in a biological control setup.


2021 ◽  
Author(s):  
KASSIM Bakar ◽  
Turgay ÜSTÜNER

Abstract This paper summarizes the different host plants and fruit flies present in two islands (Grande-Comore and Mohéli) of the Comoros Archipelago. Different exotic and wild fruit plants were sampled. Eighty plant species, potential hosts, belonging to thirty-four families were collected and incubated for the emergence of fruit flies from December 2019 to September 2020. Twenty-five plant hosts from ten families comprising cultivated and wild fruits have been identified. Fruit fly infestation rates per kilogram of fruit (T.Kg-1 ) varied from plant to plant. Exotic fruit plants, which accounted for more than half of infested plants, including Cucumis melo, Cucurbita pepo, Prunus persica, Coffea arabica and Capsicum frutescens had high infestation rates. For wild plants, the highest infestation rates have been observed in some families including Combretaceae, Cucurbitaceae, Solanaceae and Vitaceae. The highest infestation rate per kilogram of fruit was observed in a wild plant: Cyphostemma lageniflorum. Thirteen new host plants infested by Tephritidae are reported and/or listed for the first time in Comoros. In total, eight species of fruit flies identified. However, the species Bactrocera dorsalis Hendel, 1912 (47.5%) and Dacus bivittatus (Bigot, 1858) (37.6%) were the most representative of the Tephritidae that emerged.


2021 ◽  
Vol 45 (4) ◽  
pp. 615-621
Author(s):  
Karim Nebie ◽  
Remy A. Dabire ◽  
Sylvestre Fayama ◽  
Issaka Zida ◽  
Alizeta Sawadogo

2009 ◽  
Vol 99 (6) ◽  
pp. 629-641 ◽  
Author(s):  
M.W. Mwatawala ◽  
M. De Meyer ◽  
R.H. Makundi ◽  
A.P. Maerere

AbstractThe host range of major fruit fly pests in Central Tanzania was evaluated from October 2004 to October 2006. Samples of 48 potential hosts were collected and incubated for fruit fly emergence. Bactrocera invadens was the dominant species in incidence expressed as the ratio of infested to total number samples collected, as well as infestation rate, expressed as number of flies emerging per unit weight. Eight new host fruits are reported. Infestation by native pests, such as Ceratitis capitata and C. cosyra, was minor compared to B. invadens. Ceratitis rosa was the dominant species in temperate fruits, and Cucurbitaceae were mainly infested by Bactrocera cucurbitae, a specialized cucurbit feeder. Among commercial fruits, high infestation incidences were observed in mango and guava, but they decreased throughout the fruiting season. Low infestation rates were observed in all Citrus species and in avocado, indicating these fruits as poor hosts for the studied fruit fly pests in this region. Widespread availability and abundance of fruit species studied here ensures year-round breeding of B. invadens. Seasonal infestation differs, with mango being the most important host in October to January, while guava being important from February to August. Tropical almond showed very high incidence and infestation rate for B. invadens and might act as an important reservoir host, bridging the fruiting seasons of mango and guava. Soursop acts as an important host for C. cosyra after the mango season. Ceratitis capitata is a pest of minor importance of the commercial fruits studied in this region.


Author(s):  
Jiajin Fu ◽  
Lingyu Zeng ◽  
Linyu Zheng ◽  
Zhenzhen Bai ◽  
Zhihong Li ◽  
...  

Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.


2018 ◽  
Vol 109 (4) ◽  
pp. 500-509 ◽  
Author(s):  
Z. Bai ◽  
L. Liu ◽  
M.S. Noman ◽  
L. Zeng ◽  
M. Luo ◽  
...  

AbstractThe oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruit crops. Commensal bacteria play a very important part in the development, reproduction, and fitness of their host fruit fly. Uncovering the function of gut bacteria has become a worldwide quest. Using antibiotics to remove gut bacteria is a common method to investigate gut bacteria function. In the present study, three types of antibiotics (tetracycline, ampicillin, and streptomycin), each with four different concentrations, were used to test their effect on the gut bacteria diversity of laboratory-reared B. dorsalis. Combined antibiotics can change bacteria diversity, including cultivable and uncultivable bacteria, for both male and female adult flies. Secondary bacteria became the dominant population in female and male adult flies with the decrease in normally predominant bacteria. However, in larvae, only the predominant bacteria decreased, the bacteria diversity did not change a lot, likely because of the short acting time of the antibiotics. The bacteria diversity did not differ among fruit fly treatments with antibiotics of different concentrations. This study showed the dynamic changes of gut bacterial diversity in antibiotics-treated flies, and provides a foundation for research on the function of gut bacteria of the oriental fruit fly.


2020 ◽  
Vol 24 (2) ◽  
pp. 122
Author(s):  
Valentina E. F. Aryuwandari ◽  
Y. Andi Trisyono ◽  
Suputa Suputa ◽  
Stefano De Faveri ◽  
Shanmugam Vijaysegaran

Fruit flies (Diptera: Tephritidae) are major pests of fruits and vegetables in many countries, including Indonesia. Knowledge of the fruit fly host range in a specific area is an important part of the area-wide pest management program to reduce the pest problem. The aim of this study was to extend and update the information on the host range of fruit flies in the Regency of Sleman, Yogyakarta. This area is one of the centers of fruit production, particularly snake fruit in Indonesia. Fruit sampling was conducted from August 2019 to February 2020 in four sub-districts in Sleman consisting of different types of agro-ecosystems. Fruit rearing was carried out in the laboratory followed by identification of the fruit and fruit flies that emerged to species level. From the 23 species of fruits belonging to 14 different families that were collected, the following 6 species of fruit flies emerged: Bactrocera dorsalis, B. carambolae, B. umbrosa, B. albistrigata, B. mcgregori, and Zeugodacus cucurbitae. Bactrocera dorsalis and B. carambolae utilized the widest range of hosts, 12 and 11 species of fruits, respectively. Syzygium cumini, Malpighia emarginata, and Phaleria macrocarpa were recorded for the first time as new hosts of B. carambolae in Indonesia. Additional data of B. dorsalis and B. carambolae infesting salak cv. pondoh is also reported.


Sign in / Sign up

Export Citation Format

Share Document