scholarly journals Multiparameter root vectors

1989 ◽  
Vol 32 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Paul Binding

The concept of “root vectors” is investigated for a class of multiparameter eigenvalue problemswhere operate in Hilbert spaces Hm and . Previous work on this “uniformly elliptic” class has demonstrated completeness of the decomposable tensors x1 ⊗…⊗ xk in a subspace G of finite codimension in H=H1 ⊗…⊗ Hk, but questions remain about extending this to a basis of H. In this work, bases of elements ym, in general nondecomposable but satisfying recursive equations of the type are constructed for the “root subspaces” corresponding to λ∈ℝk.

Author(s):  
Paul Binding ◽  
Patrick J. Browne ◽  
Lawrence Turyn

SynopsisWe discuss necessary and sufficient conditions for the existence of eigentuples λ=(λl,λ2) and eigenvectors x1≠0, x2≠0 for the problem Wr(λ)xr = 0, Wr(λ)≧0, (*), where Wr(λ)= Tr + λ1Vr2, r=1,2. Here Tr and Vrs are self-adjoint operators on separable Hilbert spaces Hr. We assume the Vrs to be bounded and the Tr bounded below with compact resolvent. Most of our conditions involve the conesWe obtain results under various conditions on the Tr, but the following is typical:THEOREM. If (*) has a solution for all choices ofT1, T2then (a)0∉ V1UV2,(b)V1∩(—V2) =∅ and (c) V1⊂V2∪{0}, V2⊈V1∪{0}. Conversely, if (a) and (b) hold andV1⊈V2∪∩{0}, V2⊈ then (*) has a solution for all choices ofT1, T2.


1987 ◽  
Vol 30 (2) ◽  
pp. 215-228 ◽  
Author(s):  
P. A. Binding ◽  
K. Seddighi

We study the eigenproblemwhereand Tm, Vmn are self-adjoint operators on separable Hilbert spaces Hm. We assume the Tm to be bounded below with compact resolvents, and the Vmn to be bounded and to satisfy an “ellipticity” condition. If k = 1 then ellipticity is automatic, and if each Tm is positive definite then the problem is “left definite”.


1974 ◽  
Vol 26 (3) ◽  
pp. 734-745 ◽  
Author(s):  
Uri Fixman ◽  
Frank A. Zorzitto

In connection with the study of perturbation methods for differential eigenvalue problems, Aronszajn put forth a theory of systems (X, Y; A, B) consisting of a pair of linear transformations A, B:X → Y (see [1]; cf. also [2]). Here X and Y are complex vector spaces, possibly of infinite dimension. The algebraic aspects of this theory, where no restrictions of topological nature are imposed, where developed in [3] and [5]. We hasten to point out that the category of C2-systems (definition in § 1) in which this algebraic investigation takes place is equivalent to the category of all right modules over the ring of matrices of the form


1971 ◽  
Vol 23 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Robert Carroll ◽  
Emile State

In this paper we prove some existence theorems for some weak problems with variable domains arising from hyperbolic equations of the type1.1where A = {A(t)} is, for example, a family of elliptic differential operators in space variables x = (x1, …, xn). Thus let H be a separable Hilbert space and let V(t) ⊂ H be a family of Hilbert spaces dense in H with continuous injections i(t): V(t) → H (0 ≦ t ≦ T < ∞). Let V’ (t) be the antidual of V(t) (i.e. the space of continuous conjugate linear maps V(t) → C) and using standard identifications one writes V(t) ⊂ H ⊂ V‘(t).


1978 ◽  
Vol 21 (2) ◽  
pp. 213-219 ◽  
Author(s):  
R. Schöneberg

Around 1960, the Russian mathematician Kachurovski [1] introduced the notion of monotone operators in Hilbert spaces: Let E be a Hilbert space and X ⊂ E. An operator T:X→E is said to be monotone, iff.


1985 ◽  
Vol 28 (2) ◽  
pp. 143-158 ◽  
Author(s):  
H. Gingold

Consider the ordinary linear matrix differential systemψ(x) is a scalar mapping, X and A(x) are n by n matrices. Both belong to C1([a,∞)) for some integer l. The stability and asymptotic behaviour of its solutions have been subject to much investigation. See Bellman [2], Levinson [24], Hartman and Wintner [20], Devinatz [9], Fedoryuk [11], Harris and Lutz [16,17,18] and Cassell [30]. The special interest in eigenvalue problems and in the deficiency index problem stimulated a continued interest in asymptotic integration. See e.g. Naimark [36], Eastham and Grundniewicz [10] and [8,9]. Harris and Lutz [16,17,18] succeeded in explaining how to derive many known theorems in asymptotic integration by repeatedly using certain “(1 + Q)” linear transformations.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 367-384 ◽  
Author(s):  
A. L. Andrew

There is an extensive literature on application of the Ritz method to eigenvalue problems of the type where L1, L2 are positive definite linear operators in a Hilbert space (see for example [1]). The classical theory concerns the case in which there exists a minimum (or maximum) eigenvalue, and subsequent eigenvalues can be located by a well-known mini-max principle [2; p. 405]. This paper considers the possibility of application of the Ritz method to eigenvalue problems of the type (1) where the linear operators L1L2 are not necessarily positive definite and a minimum (or maximum) eigenvalue may not exist. The special cases considered may be written with the eigenvalue occurring in a non-linear manner.


2016 ◽  
Vol 60 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Everaldo S. Medeiros ◽  
Uberlandio B. Severo

AbstractWe consider the semilinear problemwhere λ is a positive parameter and f has exponential critical growth. We first establish the existence of a non-zero weak solution. Then, by assuming that f is odd, we prove that the number of solutions increases when the parameter λ becomes large. In the proofs we apply variational methods in a suitable weighted Sobolev space consisting of functions with rapid decay at infinity.


Author(s):  
S. C. R. Dennis

Two recent papers have discussed eigenvalue problems relating to second-order, self-adjoint differential equations from the point of view of the deferred approach to the limit in the finite-difference treatment of the problem. In both cases the problem is made definite by considering the differential equationprimes denoting differentiation with respect to x, with two-point boundary conditionsand given at the ends of the interval (0, 1). The usual finite-difference approach is to divide the range (0, 1) into N equal strips of length h = 1/N, giving a set of N + 1 pivotal values φn as the analogue of a solution of (1), φn denoting the pivotal value at x = nh. In terms of central differences we then haveand retaining only second differences yields a finite-difference approximation φn = Un to (1), where the pivotal U-values satisfy the equationsdefined at all internal points, together with two equations holding at the end-points and approximately satisfying the end conditions (2). Here Λ is the corresponding approximation to the eigenvalue λ. A possible finite-difference treatment of the end conditions (2) would be to replace (1) at x = 0 by the central-difference formulaand use the corresponding result for the first derivative of φ, i.e.whereq(x) = λρ(x) – σ(x). Eliminating the external value φ–1 between these two and making use of (1) and (2) we obtain the equationwhere for convenience we write k0 = B0/A0. Similarly at x = 1 we obtainwithkN = B1/A1. If we neglect terms in h3 in these two they become what are usually taken to be the first approximation to the end conditions (2) to be used in conjunction with the set (4) (with the appropriate change φ = U, λ = Λ). This, however, results in a loss of accuracy at the end-points over the general level of accuracy of the set (4), which is O(h4), so there is some justification for retaining the terms in h3, e.g. if a difference correction method were being used they would subsequently be added as a correction term.


Author(s):  
M. S. P. Eastham

SynopsisThe differential equationin N dimensions is considered, where q(x) is periodic. When N = 1, it is known that the conditional stability set coincides with the spectrum and that these also coincide with two other sets involving eigenvalues of associated eigenvalue problems. These results have been proved by means of the Floquet theory and the discriminant. Here an alternative proof is given which avoids the Floquet theory and which applies to the general case of N dimensions.


Sign in / Sign up

Export Citation Format

Share Document