scholarly journals Almost diagonal systems in asymptotic integration

1985 ◽  
Vol 28 (2) ◽  
pp. 143-158 ◽  
Author(s):  
H. Gingold

Consider the ordinary linear matrix differential systemψ(x) is a scalar mapping, X and A(x) are n by n matrices. Both belong to C1([a,∞)) for some integer l. The stability and asymptotic behaviour of its solutions have been subject to much investigation. See Bellman [2], Levinson [24], Hartman and Wintner [20], Devinatz [9], Fedoryuk [11], Harris and Lutz [16,17,18] and Cassell [30]. The special interest in eigenvalue problems and in the deficiency index problem stimulated a continued interest in asymptotic integration. See e.g. Naimark [36], Eastham and Grundniewicz [10] and [8,9]. Harris and Lutz [16,17,18] succeeded in explaining how to derive many known theorems in asymptotic integration by repeatedly using certain “(1 + Q)” linear transformations.

1974 ◽  
Vol 26 (3) ◽  
pp. 734-745 ◽  
Author(s):  
Uri Fixman ◽  
Frank A. Zorzitto

In connection with the study of perturbation methods for differential eigenvalue problems, Aronszajn put forth a theory of systems (X, Y; A, B) consisting of a pair of linear transformations A, B:X → Y (see [1]; cf. also [2]). Here X and Y are complex vector spaces, possibly of infinite dimension. The algebraic aspects of this theory, where no restrictions of topological nature are imposed, where developed in [3] and [5]. We hasten to point out that the category of C2-systems (definition in § 1) in which this algebraic investigation takes place is equivalent to the category of all right modules over the ring of matrices of the form


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Peiguang Wang ◽  
Xiaowei Liu

This paper investigates the stability problem of linear matrix differential systems and gives some sufficient conditions ofh-stability for linear matrix system and its associated perturbed system by using the Kronecker product of matrices. An example is also worked out to illustrate our results.


Author(s):  
Fatemeh Khani ◽  
Mohammad Haeri

Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately. Finally, the effectiveness of the proposed scheme is illustrated on a continuous stirred tank reactor (CSTR) process.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 424
Author(s):  
Dean Wang ◽  
Zuolong Zhu

The coarse-mesh finite difference (CMFD) scheme is a very effective nonlinear diffusion acceleration method for neutron transport calculations. CMFD can become unstable and fail to converge when the computational cell optical thickness is relatively large in k-eigenvalue problems or diffusive fixed-source problems. Some variants and fixups have been developed to enhance the stability of CMFD, including the partial current-based CMFD (pCMFD), optimally diffusive CMFD (odCMFD), and linear prolongation-based CMFD (lpCMFD). Linearized Fourier analysis has proven to be a very reliable and accurate tool to investigate the convergence rate and stability of such coupled high-order transport/low-order diffusion iterative schemes. It is shown in this paper that the use of different transport solvers in Fourier analysis may have some potential implications on the development of stabilizing techniques, which is exemplified by the odCMFD scheme. A modification to the artificial diffusion coefficients of odCMFD is proposed to improve its stability. In addition, two explicit expressions are presented to calculate local optimal successive overrelaxation (SOR) factors for lpCMFD to further enhance its acceleration performance for fixed-source problems and k-eigenvalue problems, respectively.


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


1970 ◽  
Vol 11 (1) ◽  
pp. 84-84 ◽  
Author(s):  
James S. W. Wong

Remarks 1, 3 and 5 are incorrect as stated. They should be supplemented by the following observations:(i) In case the perturbing term is linear in y, i.e. f(t, y) = B(t)y, the conclusion of Theorem 1 will follow from Lemma 1 when applied to equation (15) if we assume, instead of (6),The hypothesis given in Trench's theorem is sufficient to imply (*) but not (6). A similar comment applies to Remark 5.


Sign in / Sign up

Export Citation Format

Share Document