A new look at Belgian aeromagnetic and gravity data through image-based display and integrated modelling techniques

1993 ◽  
Vol 130 (5) ◽  
pp. 583-591 ◽  
Author(s):  
B. C. Chacksfield ◽  
W. De Vos ◽  
L. D'Hooge ◽  
M. Dusar ◽  
M. K. Lee ◽  
...  

AbstractDigital processing and image-based display techniques have been used to generate contour and shaded-relief maps of Belgian aeromagnetic data at a scale of 1:300000 for the whole of Belgium. These highlight the important anomalies and structural trends, particularly over the Brabant Massif. North and vertically illuminated shaded-relief plots, enhanced structural belts trending west–east to northwest–southeast in the Brabant Massif and west–east to southwest–northeast in the core of the Ardennes. The principal magnetic lineaments have been identified from the shaded-relief plots and tentatively correlated to basement structures. Most short lineaments are correlated with individual folds while the more extensive lineaments are correlated with large scale fault structures. Magnetic highs within the Brabant Massif are attributed to folded sediments of the Tubize Group. The magnetic basement in the east of Belgium is sinistrally displaced to the north by an inferred deep NNW–SSE crustal fracture. The Bouguer anomaly map of Belgium identifies the Ardennes as a negative area, and the Brabant Massif as a positive area, with the exception of a WNW–trending gravity low in its western part. The southern margin of the Brabant Massif is defined by a steep gravity gradient coincident with the Faille Bordiere (Border Fault). Trial modelling of the gravity and magnetic data, carried out along profiles across the Brabant and Stavelot massifs, has identified probable acid igneous intrusions in the western part of the Brabant Massif, and a deep magnetic lower density body underlying the whole Ardennes region, which is thought to be a distinctive Precambrian crustal block.

1967 ◽  
Vol 104 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Hamid Nassar Al-Sadi

AbstractThe area to the north of Barnstaple (North Devon) was covered by a detailed gravity survey. The main gravity gradient of the Bouguer anomaly map (estimated to be 1·2 mgals per mile) confirmed the conclusions drawn by Bott et al. (1958), who attributed it to a basin of possibly Carboniferous sediments and/or Old Red Sandstone, about 4 miles thick, separated from the outcropping Devonian rocks by an assumed thrust plane.A negative residual gravity anomaly is located over the outcrop of the Pickwell Down Sandstone. Analyses of the anomaly show that it is caused by the southwards dipping belt of sandstone and that the angle of dip of the formation decreases with depth. At a depth of about 2 miles the formation becomes nearly horizontal. Alternatively, it may terminate against an assumed thrust plane underlying the whole outcropping Devonian.The aeromagnetic map of the area shows an elongated magnetic “high” following the outcrop of the Morte Slates. The anomaly is probably caused by near surface, highly magnetized rocks in association with the Morte Slates.


2021 ◽  
Author(s):  
Dimitri Bandou ◽  
Patrick Schläfli ◽  
Michael Schwenk ◽  
Guilhem A. Douillet ◽  
Edi Kissling ◽  
...  

<p>Interpretations of the processes leading to the formation of overdeepened valleys, where the bedrock lies well below sea level today, are contested as the overdeepenings have been filled by sediments or host lakes making observations difficult. Here, we combine gravimetric, GNSS (Global Navigation Satellite System) and borehole data within a 3D forward modelling framework (Gravi3D) to assess the 3-D subsurface geometry of such overdeepenings in the Swiss plateau, to the North of the Alps. Gravi3D has two components (PRISMA and BGPoly), which allow to obtain analytically the gravity effect of prisms and polygons (Nagy (1966) and Talwani & Ewing (1960)). PRISMA allows first to estimate the spatial extent of an overdeepening and the density contrast between the overdeepening fill and the bedrock. In contrast, BGPoly is designed to disclose the details of a complex 3-D geometry of an overdeepening fill through an approximation of its shape with polygons. Gravi3D will be open access and is designed for a larger scientific community.</p><p> <br>Here, we focus on overdeepenings beneath two valleys, the Aare valley and the Gürbe valley to the South of Bern. In this region, the occurrence of overdeepenings has already been disclosed through drilling, but the details about the geometry have not been elaborated yet. The study region is characterized by three mountain ranges oriented North-South and comprises Burdigalian Upper Marine Molasse bedrock. The Gürbe and Aare valleys in-between are c. 300 m-deep and c. 1 km-wide, where overdeepenings with a >100 m-thick Quaternary fill have already been identified by drilling. The gravity data collected along an 8 km-long profile with stations spaced between 100 and 300 m yield a Bouguer anomaly that ranges from c. -99 to -106 mGal. We relate this anomaly to the regional trend (c. 2 mGal over 8 km) and to the effect of the overdeepenings’ sedimentary fillings (2 – 4 mGal/km), disclosing a sharp anomaly pattern over the inferred tunnel valleys. The removal of the signal related to the regional trend results in a residual anomaly of c. 1 mGal for the bedrock ridge in-between the valleys (Belpberg mountain), and of -2.65 and -3.56 mGal for the Gürbe and Aare valley overdeepenings, respectively. We observe a steeper gravity gradient for the Eastern flank of both overdeepenings. The use of Nettleton method to model the residual gravity anomaly across Belpberg yields a density of 2.5 g/cm<sup>3</sup> for the Molasse bedrock. In addition, the estimation of the largest gravity response through the overdeepening fill, calculated with Prisma yields a density value of c. 2.0 – 2.2 g/cm3 for the Quaternary sediments. As a further information, Prisma predicts a maximum thickness of 140 m for the Quaternary suite beneath the Gürbe valley and at least 200 m beneath the Aare valley. This yields a minimum slope of approximately 18° for the Gürbe overdeepening.</p><p> </p><p>REFERENCES</p><p>Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371, 1966.</p><p>Talwani, M., Ewing, M.: Rapid computation of gravitational attraction of three‐dimensional bodies of arbitrary shape. Geophysics 25, 203–225, 1960.</p>


1997 ◽  
Vol 40 (2) ◽  
Author(s):  
A. Garcìa ◽  
I. Blanco ◽  
J. M. Torta ◽  
I. Socías

To contribute to our understanding of the structure of the Teide volcano, a detailed aeromagnetic survey was carried out covering the area of Las Cañadas caldera and the Teide-Pico Viejo complex. Taking into account the rugged relief of the area (altitude ranges from sea level to almost 4000 m), a terrain correction has been applied. As a first approximation, the topography has been characterized by a uniform magnetization of 5 Am-1 (based on field and laboratory rock magnetic data). Several enhancement techniques have been applied to the residual map (original map minus topographic effect), such as reduction to the pole, pseudogravity integration and upward continuation. In the reduced-to-the-pole map the large positive anomaly that appears centered to the north of Pico Viejo is noteworthy and could be caused by a basaltic intrusion responsible for the last eruptions in this area. Also, a small magnetic low appears over Teide peak, which should be related to slightly-magnetized shallow phonolitic materials. The main tectonic direction of Tenerife, SW-NE, is also clearly reflected on the magnetic anomaly map. The comparison between the pseudogravity and the Bouguer anomaly maps indicates a good correlation between magnetic and gravimetric sources.


2009 ◽  
Vol 47 (5) ◽  
Author(s):  
F. Caratori Tontini ◽  
P. Stefanelli ◽  
I. Giori ◽  
O. Faggioni ◽  
C. Carmisciano

This paper presents the revised aeromagnetic anomaly map of Italy and its surrounding seas, projected at reference altitude of 2500 m and geomagnetic epoch 1979.0. The magnetic data set used for the map compilation is composed of the total intensity field data acquired partly during the aeromagnetic surveys performed by the Italian National Oil Company (Agip - Direzione Esplorazione Idrocarburi) between 1971 and 1980, and during the new surveys committed by the Geophysical Corporate Services of Eni Spa - Exploration & Production Division in the years 2001-2002. In both campaigns the recorded data were very dense and uniformly distributed over the examined area. A detailed re-processing of this data set and a re-organization into a new digital database were carried out. The re-processing was done using modern adequate techniques, obtaining a remarkable exploitation of the data information content. The result is a colour shaded relief map that shows on a large scale many of the structural lineaments of the Italian area. The inclusion of a larger number of data and the subtraction of an appropriate magnetic reference field are the main reasons of an enhancement in the anomaly definition. This new map replaces the previous Agip version, and aims to become the reference aeromagnetic cartography of the Italian area. We think this work will be useful both for researchers interested in large scale tectonic studies, and for anyone interested in the investigation of smaller scale structures, such as volcanic complexes or infra-sedimentary magnetic bodies, as well as for mining research.


2017 ◽  
Vol 47 (1) ◽  
pp. 3-19
Author(s):  
João Gabriel Motta ◽  
Norberto Morales ◽  
Walter Malagutti Filho

ABSTRACT: The Brasília and Ribeira fold belts have been established in south-southwestern São Francisco Craton during the Brasiliano-Pan African orogeny (0.9-0.5 Ga - Tonian to Cambrian), and played an important role in West Gondwana continent assembly. The region is given by a complex regional fold and thrust belt superposed by shearing during the orogeny late times, with superposing stress fields forming a structural interference zone. These thrust sheets encompasses assemblies from lower- to upper-crust from different major tectonic blocks (Paranapanema, São Francisco), and newly created metamorphic rocks. Re-evaluation of ground gravity datasets in a geologically constrained approach including seismology (CRUST1 model) and magnetic data (EMAG2 model) unveiled details on the deep- crust settings, and the overall geometry of the structural interference zone. The Simple Bouguer Anomaly map shows heterogeneous density distribution in the area, highlighting the presence of high-density, high metamorphic grade rocks along the Alterosa suture zone in the Socorro-Guaxupé Nappe, lying amid a series of metasedimentary thrust scales in a regional nappe system with important verticalization along regional shear zones. Forward gravity modeling favors interpretations of structural interference up North into Guaxupé Nappe. Comparison to geotectonic models shows similarities with modern accretionary belts, renewing the discussion.


2018 ◽  
Vol 7 (1) ◽  
pp. 94
Author(s):  
Anatole Eugene Djieto Lordon ◽  
Mbohlieu YOSSA ◽  
Christopher M Agyingi ◽  
Yves Shandini ◽  
Thierry Stephane Kuisseu

Gravimetric studies using the ETOPO1-corrected high resolution satellite-based EGM2008 gravity data was used to define the surface extent, depth to basement and shape of the Mamfe basin. The Bouguer anomaly map was produced in Surfer 11.0. The Fast Fourier Transformed data was analyzed by spectral analysis to remove the effect of the regional bodies in the study area. The residual anomaly map obtained was compared with the known geology of the study area, and this showed that the gravity highs correspond to the metamorphic and igneous rocks while the gravity lows match with Cretaceous sediments. Three profiles were drawn on the residual anomaly map along which 2D models of the Mamfe basin were drawn. The modeling was completed in Grav2dc v2.06 software which uses the Talwini’s algorithm and the resulting models gave the depth to basement and the shape of the basement along the profiles. After processing and interpretation, it was deduced that the Mamfe basin has an average length and width of 77.6 km and 29.2 km respectively, an average depth to basement of 5 km and an overall U-shape basement. These dimensions (especially the depth) theoretically create the depth and temperature conditions for petroleum generation. 


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


2021 ◽  
Author(s):  
sara sayyadi ◽  
Magnús T. Gudmundsson ◽  
Thórdís Högnadóttir ◽  
James White ◽  
Joaquín M.C. Belart ◽  
...  

<p>The formation of the oceanic island Surtsey in the shallow ocean off the south coast of Iceland in 1963-1967 remains one of the best-studied examples of basaltic emergent volcanism to date. The island was built by both explosive, phreatomagmatic phases and by effusive activity forming lava shields covering parts of the explosively formed tuff cones.  Constraints on the subsurface structure of Surtsey achieved mainly based on the documented evolution during eruption and from drill cores in 1979 and in the ICDP-supported SUSTAIN drilling expedition in 2017(an inclined hole, directed 35° from the vertical). The 2017 drilling confirmed the existence of a diatreme, cut into the sedimentary pre-eruption seafloor (Jackson et al., 2019). </p><p>We use 3D-gravity modeling, constrained by the stratigraphy from the drillholes to study the structure of the island and the underlying diatreme.  Detailed gravity data were obtained on Surtsey in July 2014 with a gravity station spacing of ~100 m. Density measurements for the seafloor sedimentary and tephra samples of the surface were carried out using the ASTM1 protocol. By comparing the results with specific gravity measurements of cores from drillhole in 2017, a density contrast of about 200 kg m<sup>-3</sup> was found between the lapilli tuffs of the diatreme and the seafloor sediments.  Our approach is to divide the island into four main units of distinct density: (1) tuffs above sea level, (2) tuffs below sea level, (3) lavas above sea level, and (4) a lava delta below sea level, composed of breccias over which the lava advanced during the effusive eruption.  The boundaries between the bodies are defined from the eruption history and mapping done during the eruption, aided by the drill cores. </p><p>A complete Bouguer anomaly map is obtained by calculating a total terrain correction by applying the Nagy formula to dense DEMs (5 m spacing out to 1.2 km from station, 200 m spacing between 1.2 km and 50 km) of both island topography and ocean bathymetry.  Through the application of both forward and inverse modeling, using the GM-SYS 3D software, the results provide a 3-D model of the island itself, as well as constraints on diatreme shape and depth.</p>


Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


Sign in / Sign up

Export Citation Format

Share Document