The Application of the European Time Scale to the Upper Tertiary of North America

1940 ◽  
Vol 77 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Guy E. Pilgrim

Matthew's provisional classification of the freshwater Tertiary of Western America in 1899 was succeeded ten years later by a detailed correlation of the American Tertiary Mammal horizons with those of Europe, published by Osborn and himself in 1909. At that time these authors placed the Pikermi horizon of Europe (Pontian) in the Upper Miocene and the Val d'Arno horizon (Villafranchian) in the Upper Pliocene. They in common with many later writers subsequently adopted a Lower Pliocene and Pleistocene age respectively for the two horizons named. Allowing for this change of view, Osborn's and Matthew's correlation has been substantially followed, with a few modifications due to individual opinion, by all later authorities. The reasons for it were somewhat elaborated by Osborn in his Age of Mammals (1910). It is evident that the Equidae formed the basis for it. The appearance of the genera Anchitherium (as species of Kalobatippus and Hypohippus were then named), Hipparion and Equus in North America were assumed to be approximately contemporaneous with their appearance in Europe. That North America was at any rate the main, if not the exclusive radiative centre for the distribution of the Equidae has been universally acknowledged. Hence Osborn's and Matthew's choice of this group as a standard of age seemed to be fully justified. In accordance with it the first Hipparion beds of North America were regarded as Pontian.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jianzhuo Yan ◽  
Shangbin Chen ◽  
Sinuo Deng

Abstract As an advanced function of the human brain, emotion has a significant influence on human studies, works, and other aspects of life. Artificial Intelligence has played an important role in recognizing human emotion correctly. EEG-based emotion recognition (ER), one application of Brain Computer Interface (BCI), is becoming more popular in recent years. However, due to the ambiguity of human emotions and the complexity of EEG signals, the EEG-ER system which can recognize emotions with high accuracy is not easy to achieve. Based on the time scale, this paper chooses the recurrent neural network as the breakthrough point of the screening model. According to the rhythmic characteristics and temporal memory characteristics of EEG, this research proposes a Rhythmic Time EEG Emotion Recognition Model (RT-ERM) based on the valence and arousal of Long–Short-Term Memory Network (LSTM). By applying this model, the classification results of different rhythms and time scales are different. The optimal rhythm and time scale of the RT-ERM model are obtained through the results of the classification accuracy of different rhythms and different time scales. Then, the classification of emotional EEG is carried out by the best time scales corresponding to different rhythms. Finally, by comparing with other existing emotional EEG classification methods, it is found that the rhythm and time scale of the model can contribute to the accuracy of RT-ERM.


Vegetatio ◽  
1989 ◽  
Vol 80 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Carl D. Monk ◽  
Donald W. Imm ◽  
Robert L. Potter ◽  
Geoffrey G. Parker

2017 ◽  
Author(s):  
Efisio Solazzo ◽  
Christian Hogrefe ◽  
Augustin Colette ◽  
Marta Garcia-Vivanco ◽  
Stefano Galmarini

Abstract. The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with time-scale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the time scale and the fields that the two models are most sensitive to. The representation of planetary boundary layers (PBL) dynamics is pivotal to both models. In particular: i) The fluctuations slower than −1.5 days account for 70–85 % of the total ozone quadratic error; ii) A recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; iii) Errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); iv) The CMAQ ozone error has a weak/negligible dependence on the errors in NO2 and wind speed, while the error in NO2 significantly impacts the ozone error produced by Chimere; v) On a continent wide monitoring network-average, a zeroing out of anthropogenic emissions produces an error increase of 45 % (25 %) during summer and of 56 % (null) during winter for Chimere (CMAQ), while a zeroing out of lateral boundary conditions results in an ozone error increase of 30 % during summer and of 180 % during winter (CMAQ).


2021 ◽  
Author(s):  
Kjell Ander

Ensiferan insects (crickets, katydids, grigs and allies) are well known for rubbing parts of their cuticle together to produce sound: a process called stridulation. In this article Swedish entomologist Kjell Ander describes a novel (at the time) stridulatory apparatus in the great grig, Cyphoderris monstrosa (Prophalangopsidae), a relict ensiferan found in the mountainous regions of western North America. Ander used preserved specimens to predict the sound-producing function of a pair of abdominal file-scraper apparatuses, although he was never able to directly test his proposed mechanism nor did he speculate as to the adaptive significance of the structures. The article concludes with a review of the systematic placement of various higher level taxa within the order Orthoptera, of which Ensifera is one suborder.


2021 ◽  
Author(s):  
Pedro W Crous ◽  
Amy Y Rossman ◽  
Catherine Aime ◽  
Cavan Allen ◽  
Treena Burgess ◽  
...  

Names of phytopathogenic fungi and oomycetes are essential to communicate knowledge about species and their biology, control, and quarantine as well as for trade and research purposes. Many plant pathogenic fungi are pleomorphic, meaning that they produce different asexual (anamorph) and sexual (teleomorph) morphs in their lifecycles. Because of this, more than one name has been applied to different morphs of the same species, which has confused users of names. The onset of DNA technologies makes it possible to connect different morphs of the same species, resulting in a move to a more natural classification system for fungi, in which a single name for a genus as well as species can now be used. The move to a single nomenclature, as well as the advent of molecular phylogeny and the introduction of polythetic taxonomic approaches has been the main driving force for the re-classification of fungi, including pathogens. Nonetheless, finding the correct name for species remains challenging, but there is a series of steps or considerations that could greatly simplify this process, as outlined here. In addition to various online databases and resources, a list of accurate names is herewith provided of the accepted names of the most common genera and species of phytopathogenic fungi.


1967 ◽  
Vol 45 (4) ◽  
pp. 453-459 ◽  
Author(s):  
C. D. Dondale

The mating behaviors of Philodromus rufus-like spiders from the Pacific coast, northern Ontario, and southern Ontario near Belleville revealed two species and a subspecies. P. rufus Walckenaer is identified as a transcontinental species in which the males vibrate their legs in courtship and possess an "angular" retro-lateral apophysis on the palpal tibia. P. rufus vibrans Dondale is a small, heavily-speckled subspecies of rufus. The second species is P. exilis Banks, in which the males do not vibrate and have a "non-angular" apophysis, and which occurs in the Great Lakes-St. Lawrence-Acadian forests of eastern North America.


2012 ◽  
Vol 25 (19) ◽  
pp. 6477-6495 ◽  
Author(s):  
Qi Hu ◽  
Song Feng

Abstract Interannual and multidecadal time-scale anomalies in sea surface temperatures (SST) of the North Atlantic and North Pacific Oceans could result in persistent atmospheric circulation and regional precipitation anomalies for years to decades. Understanding the processes that connect such SST forcings with circulation and precipitation anomalies is thus important for understanding climate variations and for improving predictions at interannual–decadal time scales. This study focuses on the interrelationship between the Atlantic multidecadal oscillation (AMO) and El Niño–Southern Oscillation (ENSO) and their resulting interannual to multidecadal time-scale variations in summertime precipitation in North America. Major results show that the ENSO forcing can strongly modify the atmospheric circulation variations driven by the AMO. Moreover, these modifications differ considerably between the subtropics and the mid- and high-latitude regions. In the subtropics, ENSO-driven variations in precipitation are fairly uniform across longitudes so ENSO effects only add interannual variations to the amplitude of the precipitation anomaly pattern driven by the AMO. In the mid- and high latitudes, ENSO-forced waves in the atmosphere strongly modify the circulation anomalies driven by the AMO, resulting in distinctive interannual variations following the ENSO cycle. The role of the AMO is shown by an asymmetry in precipitation during ENSO between the warm and cold phases of the AMO. These results extend the outcomes of the studies of the recent Climate Variability and Predictability (CLIVAR) Drought Working Group from the AMO and ENSO effects on droughts to understanding of the mechanisms and causal processes connecting the individual and combined SST forcing of the AMO and ENSO with the interannual and multidecadal variations in summertime precipitation and droughts in North America.


1900 ◽  
Vol 7 (10) ◽  
pp. 443-445
Author(s):  
G. W. Lamplugh

In recent discussions arising from the renewed attempts to define more closely the boundary between the Jurassio and Cretaceous systems in Russia, Germany, Belgium, and France, and also in North America, constant reference has been made to the English Wealden deposits as affording a standard of comparison. But, meanwhile, doubt has been thrown, by palæontologists who have studied certain portions of the Wealden flora and fauna, on the hitherto accepted classification of these English deposits with the Lower Cretaceous, on the grounds that the fossils showed strong Jurassic affinities. This opinion has been expressed by the late Professor O. C. Marsh in regard to the reptiles, by Dr. A. Smith Woodward in regard to the fish, and by A. C. Seward in regard to the plants. To prevent further confusion it is therefore desirable that certain facts which have been overlooked in this discussion, though for the most part already published, should be restated, since these facts seem sufficient to prove that, at any rate, the greater portion of the English Wealden series must remain as part of the Lower Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document