Tectonic setting and regional correlation of Ordovician metavolcanic rocks of the Casco Bay Group, Maine: evidence from trace element and isotope geochemistry

2004 ◽  
Vol 141 (2) ◽  
pp. 125-140 ◽  
Author(s):  
DAVID P. WEST ◽  
RAYMOND A. COISH ◽  
PAUL B. TOMASCAK

Ordovician metamorphic rocks of the Casco Bay Group are exposed in an approximately 170 km long NE-trending belt (Liberty-Orrington belt) in southern and south-central Maine. Geochemical analysis of rocks within the Spring Point Formation (469±3 Ma) of the Casco Bay Group indicate that it is an assemblage of metamorphosed bimodal volcanic rocks. The mafic rocks (originally basalts) have trace element and Nd isotopic characteristics consistent with derivation from a mantle source enriched by a crustal and/or subduction component. The felsic rocks (originally rhyolites and dacites) were likely generated through partial melting of continental crust in response to intrusion of the mafic magma. Relatively low initial εNd values for both the mafic (−1.3 to +0.6) and felsic (−4.1 to −3.8) rocks suggest interactions with Gander zone continental crust and support a correlation between the Casco Bay Group and the Bathurst Supergroup in the Miramichi belt of New Brunswick. This correlation suggests that elements of the Early to Middle Ordovician Tetagouche-Exploits back-arc basin can be traced well into southern Maine. A possible tectonic model for the evolution of the Casco Bay Group involves the initiation of arc volcanism in Early Ordovician time along the Gander continental margin on the eastern side of the Iapetus Ocean basin. Slab rollback and trenchward migration of arc magmatism initiated crustal thinning and rifting of the volcanic arc around 470 Ma and resulted in the eruption of the Spring Point volcanic rocks in a back-arc tectonic setting.

1990 ◽  
Vol 27 (9) ◽  
pp. 1182-1193 ◽  
Author(s):  
A. Dogan Paktunc

Abundant mafic rocks comprising basalts and gabbros occur in the Bathurst Camp, a complexly deformed Ordovician terrane in northeastern New Brunswick. The mafic rocks form a consanguineous suite of aphyric lavas, subvolcanic sills, and (or) dikes. Gabbros and basalts have somewhat similar major-element compositions but differ in terms of their trace-element contents. Medium-grained gabbros display tholeiitic compositions, whereas basalts and fine-grained gabbros have alkalic affinities. In general, trace-element abundances indicate an enriched source region for the Bathurst mafic rocks. Trace-element characteristics of the tholeiitic group point to a transitional setting going from back-arc to ocean basin, whereas the alkalic group has geochemical characteristics in common with within-plate basalts. Mixing between magmas of these contrasting settings could explain some of the trace-element characteristics of both groups. The back-arc-basin setting appears to be ensialic and is characterized by the absence of an underlying subducted slab during the formation of the basin. The tectonic reason for rifting in such a case could be the strike separation along a series of en echelon faults similar to those of the Gulf of California. Calc-alkaline characteristics of the upper mantle underlying the basin seem to have been inherited from southeasterly subduction of the proto-Atlantic Ocean in Early to Middle Ordovician times.


2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1995 ◽  
Vol 32 (4) ◽  
pp. 447-459 ◽  
Author(s):  
Alan D. Smith ◽  
Richard StJ. Lambert

The Slide Mountain and Cache Creek terranes are two prominent oceanic sutures in the Canadian Cordillera. Petrological and isotopic variations between volcanic rocks in these terranes support earlier interpretations from stratigraphic evidence that the Slide Mountain terrane represents the remnant of a late Paleozoic basin situated marginal to western North America, whereas the Cache Creek terrane represents a remnant of a much larger, open-ocean basin. Slide Mountain terrane volcanic rocks, represented by Late Pennsylvanian basalts of the Fennell Formation, resemble normal mid-oceanic ridge basalts but possess an unusual kaersutite- or augite-dominated mineralogy. Their εNd(300 Ma) values of +7.7 to +10.2 are among the highest observed for Paleozoic basalts. The hydrous mineralogy can be reconciled with eruption on a spreading ridge in either a back-arc or marginal basin setting. The latter is preferred from Pb isotope compositions (206Pb/204Pb = 17.7–18.5, 207Pb/204Pb = 15.51–15.61, 208Pb/204Pb = 37.2–38.8), which suggest exchange with high Th/U continental-derived sediment during hydrothermal alteration. Volcanic rocks, probably middle Mississippian, in the Bonaparte subterrane of the Cache Creek terrane include picrites and basalts belonging to a within-plate tholeiite suite. The intraplate suite broadly resembles Hawaiian basalts in major and trace element composition. However, moderate positive εNd values (εNd(340 Ma) +4.2 to +5.6) and a transition toward DUPAL signatures in Pb isotopic composition (206Pb/204Pb = 18.1–19.1, 207Pb/204Pb = 15.54–15.61, 208Pb/204Pb = 37.8–38.6) are features more similar to volcanic rocks from modern South Pacific ocean islands. Basaltic andesite and andesitic tuffs, also found in the Bonaparte subterrane, are tentatively correlated with Late Triassic to Early Jurassic low-K tholeiitic volcanic rocks of the Nicola Group on the Quesnel terrane.


1997 ◽  
Vol 34 (9) ◽  
pp. 1272-1285 ◽  
Author(s):  
T. E. Smith ◽  
P. E. Holm ◽  
N. M. Dennison ◽  
M. J. Harris

Three intimately interbedded suites of volcanic rocks are identified geochemically in the Burnt Lake area of the Belmont Domain in the Central Metasedimentary Belt, and their petrogenesis is evaluated. The Burnt Lake back-arc tholeiitic suite comprises basalts similar in trace element signature to tholeiitic basalts emplaced in back-arc basins formed in continental crust. The Burnt Lake continental tholeiitic suite comprises basalts and andésites similar in trace element composition to continental tholeiitic sequences. The Burnt Lake felsic pyroclastic suite comprises rhyolitic pyroclastics having major and trace element compositions that suggest that they were derived from crustal melts. Rare earth element models suggest that the Burnt Lake back-arc tholeiitic rocks were formed by fractional crystallization of mafic magmas derived by approximately 5% partial melting of an amphibole-bearing depleted mantle, enriched in light rare earth elements by a subduction component. The modelling also suggests that the Burnt Lake continental tholeiitic rocks were formed by contamination – fractional crystallization of mixtures of mafic magmas, derived by ~3% partial melting of the subduction-modified source, and rhyolitic crustal melts. These models are consistent with the suggestion that the Belmont Domain of the Central Metasedimentary Belt formed as a back-arc basin by attenuation of preexisting continental crust above a westerly dipping subduction zone.


2015 ◽  
Vol 52 (3) ◽  
pp. 196-214 ◽  
Author(s):  
Robert W.D. Lodge ◽  
Harold L. Gibson ◽  
Greg M. Stott ◽  
James M. Franklin ◽  
George J. Hudak

The greenstone belts along the northern margin of the Wawa subprovince of the Superior Province (Vermilion, Shebandowan, Winston Lake, Manitouwadge) formed at ca. 2720 Ma and have been interpreted to be representative of a rifted-arc to back-arc tectonic setting. Despite a common inferred tectonic setting and broad similarities, these greenstone belts have a significantly different metallogeny as evidenced by different endowments in volcanogenic massive sulphide (VMS), magmatic sulphide, and orogenic gold deposits. In this paper, we examine differences in geodynamic setting and crustal architecture as they pertain to the metallogeny of each greenstone belt by characterizing the regional-scale trace-element and isotopic (Nd and Pb) geochemistry of each belt. The trace-element geochemistry of the Vermilion greenstone belt (VGB) shows evidence for a transition from arc-like to back-arc mafic rocks in the Soudan belt to plume-driven rifted arcs in the ultramafic-bearing Newton belt. The Shebandowan greenstone belt (SGB) has a significant proportion of calc-alkalic, arc-like basalts, intermediate lithofacies, and high-Mg andesites, which are characteristic of low-angle, “hot” subduction. Extensional settings within the SGB are plume-driven and associated with komatiitic ultramafic and mid-ocean ridge basalt (MORB)-like basalts. The Winston Lake greenstone belt (WGB) is characterized by a transition from calc-alkalic, arc-like basalts to back-arc basalts upward in the strata and is capped by alkalic ocean-island basalt (OIB)-like basalts. This association is consistent with plume-driven rifting of a mature arc setting. Each of the VGB, SGB, and WGB show some isotopic evidence for the interaction with a juvenile or slightly older differentiated crust. The Manitouwadge greenstone belt (MGB) is characterized by isotopically juvenile, bimodal, tholeiitic to transitional volcanic lithofacies in a back-arc setting. The MGB is the most isotopically juvenile belt and is also the most productive in terms of VMS mineralization. The Zn-rich VMS mineralization within the WGB suggests a relatively lower-temperature hydrothermal system, possibly within a relatively shallow-water environment. The Zn-dominated and locally Au-enriched VMS mineralization, as well as mafic lithofacies and alteration assemblages, are characteristic of relatively shallower-water deposition in the VGB and SGB, and indicate that the ideal VMS-forming tectonic condition may have been compromised by a shallower-water depositional setting. However, the thickened arc crust and compressional tectonics of the SGB suprasubduction zone during hot subduction may have provided a crustal setting more favourable for the magmatic Ni–Cu sulphide and relative gold endowment of this belt.


2006 ◽  
Vol 43 (11) ◽  
pp. 1621-1637 ◽  
Author(s):  
Melissa Bowerman ◽  
Amy Christianson ◽  
Robert A Creaser ◽  
Robert W Luth

Alkaline igneous rocks of the Crowsnest Formation in southwestern Alberta and in the Howell Creek area in southeastern British Columbia have been suggested previously to be cogenetic. To test this hypothesis, samples of both suites were characterized petrographically and their major and trace element geochemistry was determined. A subset of the samples was analyzed for whole-rock Sr and Nd isotope geochemistry. The samples of the two suites are latites, trachytes, and phonolites based on the International Union of Geological Sciences (IUGS) total alkalis versus silica (TAS) diagram. Samples from both suites show similar patterns on mantle-normalized trace element diagrams, being enriched relative to mantle values but depleted in the high field-strength elements Nb, Ta, and Ti relative to the large-ion lithophile elements. The chondrite-normalized rare-earth element (REE) patterns for both suites are light REE enriched, with no Eu anomaly and flat heavy REE. The isotope geochemistry of both suites is characterized by low initial 87Sr/86Sr (SrT = 0.704 to 0.706) and low εNdT (–7 to –16). The Howell Creek samples have lower εNdT and higher SrT than do the Crowsnest samples. Based on the intra- and intersuite differences in the isotope geochemistry, we conclude that these samples are not cogenetic, but rather represent samples that have experienced similar evolutionary histories from a heterogeneous source region in the subcontinental lithospheric mantle.


1992 ◽  
Vol 29 (7) ◽  
pp. 1430-1447 ◽  
Author(s):  
J. A. Winchester ◽  
C. R. van Staal ◽  
J. P. Langton

An investigation of the geology and chemistry of the basic igneous rocks in the Elmtree and Belledune inliers in northern New Brunswick shows that the bulk of the Middle Ordovician rocks of the ophiolitic Fournier Group are best interpreted as the products of volcanism and sedimentation in an extensive ensimatic back-arc basin southeast of a volcanic arc. The oceanic back-arc-basin igneous rocks form the basement to renewed arc-related basaltic volcanism in late Middle to Late Ordovician time. The Fournier Group is separated from the structurally-underlying, shale-dominated Elmtree Formation of the Tetagouche Group by an extensive tectonic melange, which incorporates lenses of serpentinite, mafic volcanic rocks, and sedimentary rocks of both the Tetagouche and Fournier groups. The mafic volcanic rocks in the Elmtree Formation correlate best with those intercalated with the lithologically similar sediments of the Llandeilian–Caradocian Boucher Brook Formation in the northern Miramichi Highlands. The melange and the present structural amalgamation of the Tetagouche and Fournier groups result from closure of the marginal basin by northward-directed subduction at the end of the Ordovician. Most mafic suites in the Elmtree and Belledune inliers can be chemically correlated with similar suites in the northern Miramichi Highlands, showing that the two areas are not separated by a terrane boundary.


2012 ◽  
Vol 49 (1) ◽  
pp. 166-188 ◽  
Author(s):  
Susan C. Johnson ◽  
Leslie R. Fyffe ◽  
Malcolm J. McLeod ◽  
Gregory R. Dunning

The Penobscot arc system of the northeastern Appalachians is an Early Cambrian to early Tremadocian (ca. 514–485 Ma) ensialic to ensimatic arc–back-arc complex that developed along the margin of the peri-Gondwanan microcontinent Ganderia. Remnants of this Paleozoic arc system are best preserved in the Exploits Subzone of central Newfoundland. Correlative rocks in southern New Brunswick are thought to occur in the ca. 514 Ma Mosquito Lake Road Formation of the Ellsworth Group and ca. 497–493 Ma Annidale Group; however in the past, the work that has been conducted on the latter has been of a preliminary nature. New data bearing on the age and tectonic setting of the Annidale Group provides more conclusive evidence for this correlation. The Annidale Group contains subalkaline, tholeiitic to transitional, basalts to basaltic andesites, picritic tuffs and calc-alkaline to tholeiitic felsic dome complexes that have geochemical signatures consistent with suprasubduction zone magmatism that was likely generated in a back-arc basin. New U–Pb ages establish that the Late Cambrian to Early Tremadocian Annidale Group and adjacent ca. 541 Ma volcanic rocks of the Belleisle Bay Group in the New River belt were affected by a period of younger magmatism ranging in age from ca. 479–467 Ma. This provides important constraints on the timing of tectonism in the area. A ca. 479 Ma age for the Stewarton Gabbro that stitches the faulted contact between the Annidale and Belleisle Bay groups, demonstrates that structural interleaving and juxtaposition occurred during early Tremadocian time, which closely coincides with the timing of obduction of Penobscottian back-arc ophiolites onto the Ganderian margin in Newfoundland.


The most important process affecting both major and trace-element concentrations in the mantle and crust is melting producing silicate liquids which then migrate. Another process whose effects are becoming more apparent is the transport of elements by CO 2 - and H 2 O-rich fluids. Due to the relatively small amounts of fluids involved they have but little effect on the major-element abundances but may severely affect minor- and trace-element abundances in their source and the material through which they travel. The Archaean crust was a density filter which reduced the possibility of komatiite or high FeO melts with relative densities greater than about 3.0 from reaching the surface. Those melts retained in the lower crust or at the crust-mantle boundary would have enhanced the possibility of melting in the lower crust. The high FeO melts may have included the Archaean equivalents of alkali basalt whose derivatives may form an important component in the Archaean crust. The occurrence of ultramafic to basic to alkaline magmas in some Archaean greenstone belts is an assemblage most typical of modern ocean-island suites in continental environments. The rock types in the assemblage were modified by conditions of higher heat production during the Archaean and thus greater extents of melting and melting at greater depths. If modern ocean-island suites are associated with mantle plumes, which even now may be an important way to transport heat upward from the deeper mantle, it is suggested that during the Archaean mantle plumes were an important factor in the evolution of the continental crust. It appears that the Archaean continental crust was of comparable thickness to that of the present based on geobarometeric data. If the freeboard concept applied then, this would suggest that plate tectonics was also an active process during the Archaean. If so, it is probably no more realistic to assume that all Archaean greenstone belts had a similar tectonic setting than to assume that all modern occurrences of basic rocks have a common tectonic setting.


Sign in / Sign up

Export Citation Format

Share Document