Nd, Sr, and Pb isotopic evidence for contrasting origins of late Paleozoic volcanic rocks from the Slide Mountain and Cache Creek terranes, south-central British Columbia

1995 ◽  
Vol 32 (4) ◽  
pp. 447-459 ◽  
Author(s):  
Alan D. Smith ◽  
Richard StJ. Lambert

The Slide Mountain and Cache Creek terranes are two prominent oceanic sutures in the Canadian Cordillera. Petrological and isotopic variations between volcanic rocks in these terranes support earlier interpretations from stratigraphic evidence that the Slide Mountain terrane represents the remnant of a late Paleozoic basin situated marginal to western North America, whereas the Cache Creek terrane represents a remnant of a much larger, open-ocean basin. Slide Mountain terrane volcanic rocks, represented by Late Pennsylvanian basalts of the Fennell Formation, resemble normal mid-oceanic ridge basalts but possess an unusual kaersutite- or augite-dominated mineralogy. Their εNd(300 Ma) values of +7.7 to +10.2 are among the highest observed for Paleozoic basalts. The hydrous mineralogy can be reconciled with eruption on a spreading ridge in either a back-arc or marginal basin setting. The latter is preferred from Pb isotope compositions (206Pb/204Pb = 17.7–18.5, 207Pb/204Pb = 15.51–15.61, 208Pb/204Pb = 37.2–38.8), which suggest exchange with high Th/U continental-derived sediment during hydrothermal alteration. Volcanic rocks, probably middle Mississippian, in the Bonaparte subterrane of the Cache Creek terrane include picrites and basalts belonging to a within-plate tholeiite suite. The intraplate suite broadly resembles Hawaiian basalts in major and trace element composition. However, moderate positive εNd values (εNd(340 Ma) +4.2 to +5.6) and a transition toward DUPAL signatures in Pb isotopic composition (206Pb/204Pb = 18.1–19.1, 207Pb/204Pb = 15.54–15.61, 208Pb/204Pb = 37.8–38.6) are features more similar to volcanic rocks from modern South Pacific ocean islands. Basaltic andesite and andesitic tuffs, also found in the Bonaparte subterrane, are tentatively correlated with Late Triassic to Early Jurassic low-K tholeiitic volcanic rocks of the Nicola Group on the Quesnel terrane.

2004 ◽  
Vol 141 (2) ◽  
pp. 125-140 ◽  
Author(s):  
DAVID P. WEST ◽  
RAYMOND A. COISH ◽  
PAUL B. TOMASCAK

Ordovician metamorphic rocks of the Casco Bay Group are exposed in an approximately 170 km long NE-trending belt (Liberty-Orrington belt) in southern and south-central Maine. Geochemical analysis of rocks within the Spring Point Formation (469±3 Ma) of the Casco Bay Group indicate that it is an assemblage of metamorphosed bimodal volcanic rocks. The mafic rocks (originally basalts) have trace element and Nd isotopic characteristics consistent with derivation from a mantle source enriched by a crustal and/or subduction component. The felsic rocks (originally rhyolites and dacites) were likely generated through partial melting of continental crust in response to intrusion of the mafic magma. Relatively low initial εNd values for both the mafic (−1.3 to +0.6) and felsic (−4.1 to −3.8) rocks suggest interactions with Gander zone continental crust and support a correlation between the Casco Bay Group and the Bathurst Supergroup in the Miramichi belt of New Brunswick. This correlation suggests that elements of the Early to Middle Ordovician Tetagouche-Exploits back-arc basin can be traced well into southern Maine. A possible tectonic model for the evolution of the Casco Bay Group involves the initiation of arc volcanism in Early Ordovician time along the Gander continental margin on the eastern side of the Iapetus Ocean basin. Slab rollback and trenchward migration of arc magmatism initiated crustal thinning and rifting of the volcanic arc around 470 Ma and resulted in the eruption of the Spring Point volcanic rocks in a back-arc tectonic setting.


2008 ◽  
Vol 179 (4) ◽  
pp. 411-425 ◽  
Author(s):  
Philippe Monjoie ◽  
Henriette Lapierre ◽  
Artan Tashko ◽  
Georges H. Mascle ◽  
Aline Dechamp ◽  
...  

AbstractTriassic volcanic rocks, stratigraphically associated with pelagic or reef limestones, are tectonically juxtaposed with Mesozoic ophiolites in the Tethyan realm. From the central (Dinarides, Hellenides) and eastern Mediterranean (Antalya, Troodos, Baër Bassit) to the Semail nappes (Oman), they occur either associated to the tectonic sole of the ophiolitic nappes or as a distinct tectonic pile intercalated between the ophiolites and other underthrust units. In the Dinaro-Hellenic belt, the Pelagonian units represent the lower plate, which is underthrust beneath the ophiolites. Middle to Late Triassic volcanic sequences are interpreted as the eastern flank of the Pelagonian platform and are therefore considered as a distal, deep-water part of the Pelagonian margin.The Triassic volcanics from Albania and Othrys are made up of basaltic pillowed and massive flows, associated locally with dolerites and trachytes. New elemental, Nd and Pb isotopic data allow to recognize four types of volcanic suites: (1) intra-oceanic alkaline and tholeiitic basalts, (2) intra-oceanic arc-tholeiites, (3) back-arc basin basalts, (4) calc-alkaline mafic to felsic rocks. Nd and Pb isotopic initial ratios suggest that the within-plate volcanic rocks were derived from an enriched oceanic island basalt type mantle source, devoid of any continental crustal component. The lower εNd value of the trachyte could be due to assimilation of oceanic altered crust or sediments in a shallow magma chamber. Island arc tholeiites and back-arc basin basalts have a similar wide range of εNd. The absence of Nb negative anomalies in the back-arc basin basalts suggests that the basin floored by these basalts was wide and mature. The high Th contents of the island arc tholeiites suggest that the arc volcanoes were located not far away from the continental margin.Albania and Othrys volcanics contrast with the Late Triassic volcanism from eastern Mediterranean (SW Cyprus, SW Turkey), which displays solely features of oceanic within plate suites. The presence of back-arc basin basalts associated with arc-related volcanics in Central Mediterranean indicates that they were close to a still active subduction during the Upper Triassic, while back-arc basins developed, associated with within-plate volcanism, leading to the NeoTethys opening.


SEG Discovery ◽  
2021 ◽  
pp. 15-24
Author(s):  
Dave Shatwell

Abstract The Andean Cordillera is generally regarded as the product of easterly subduction of oceanic lithosphere below South America since the Late Triassic, but recent syntheses have challenged this paradigm. In one model, W-dipping oceanic subduction pulls the continent west until it collides with a ribbon continent that now forms the coastal region and Western Cordillera of the Peruvian Andes. A second model involves westerly oceanic subduction until 120 to 100 Ma, without the involvement of a ribbon continent, to explain deep, subducted slabs revealed by mantle tomographic images. Both assume that “Andean-style” E-dipping subduction did not exist during the Jurassic and Early Cretaceous. Another model, also involving mantle tomography, assumes that a back-arc basin opened inboard of the trench between 145 and 100 Ma, displacing the E-dipping subduction zone offshore without changing its polarity. This article examines the implications of these hypotheses for southern Peruvian metallogenesis during the Mesozoic, when marginal basins opened and closed and were thrust eastward and then were intruded, between 110 and ~50 Ma, by a linear belt of multiple plutons known as the Coastal Batholith. The earliest mineralization in southern Peru is located on the coast and comprises major iron oxide and minor porphyry copper deposits emplaced between 180 and 110 Ma. This was followed by Cu-rich iron oxide copper-gold deposits and a large Zn-rich volcanogenic massive sulfide (VMS) deposit between 115 and 95 Ma, then minor porphyry Cu deposits at ~80 Ma. A second episode of localized VMS mineralization followed at 70 to 68 Ma, then a group of at least five giant porphyry Cu-Mo deposits in southernmost Peru formed between 62 and 53 Ma. The conventional model of Andean-style subduction, which explains many features of Mesozoic Andean metallogenesis in terms of changing plate vectors and velocities, is a poor fit with mantle tomographic anomalies that are thought to record the paleopositions of ancient trenches. A ribbon-continent model requires some plutons of the Coastal Batholith to have been separated from others by an ocean basin. West-dipping oceanic subduction does not account for Jurassic mineralization and magmatism in southern Peru. A model involving a back-arc basin that opened inboard of the existing trench, forcing E-dipping subduction to retreat offshore between 145 and 100 Ma, seems to best explain the metallogenic and tomographic data.


2010 ◽  
Vol 47 (1) ◽  
pp. 13-34 ◽  
Author(s):  
Joseph M. English ◽  
Mitchell G. Mihalynuk ◽  
Stephen T. Johnston

The northern Cache Creek terrane in the Canadian Cordillera includes a subduction complex that records the existence of a late Paleozoic – Mesozoic ocean basin and provides an opportunity to assess accretionary processes that involve the transfer of material from a subducting plate to an upper plate. Lithogeochemical data from basaltic rocks indicate that the northern Cache Creek terrane is dominated by two different petrogenetic components: (1) a dominant suite of subalkaline intrusive and extrusive rocks mostly of arc affinity and (2) a volumetrically less significant suite of alkaline volcanic rocks of within-plate affinity. The subalkaline intrusive and extrusive rocks constitute a section of oceanic lithosphere that is interpreted to have occupied a fore-arc position during the Late Triassic and Early Jurassic before it was accreted during collisional orogenesis in the Middle Jurassic. Alkaline volcanic rocks in the northern Cache Creek terrane are stratigraphically associated with carbonate strata that contain Tethyan fauna that are exotic with respect to the rest of North America; together, they are interpreted as remnants of oceanic seamounts and (or) plateaux. The volcanic rocks are a minor component of the carbonate stratigraphy, and it appears that the majority of the volcanic basement was either subducted completely at the convergent margin or underplated at greater depth in the subduction zone. In summary, accretion in the northern Canadian Cordillera occurred principally by the accretion of island arcs and emplacement of fore-arc ophiolites during collisional orogenesis. The transfer of oceanic sediments and the upper portions of oceanic seamounts from the subducting plate to an accretionary margin accounts for only small volumes of growth of the upper plate.


2008 ◽  
Vol 45 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Jaroslav Dostal ◽  
J Duncan Keppie ◽  
B Neil Church ◽  
Peter H Reynolds ◽  
Cheryl R Reid

The Tertiary (Paleogene and Neogene) geological record in south-central Canadian Cordillera is dominated by the 350–400 km wide, lower Eocene volcanic arc and the overlying Miocene–Recent back-arc lavas that are separated by a hiatus in magmatic activity between 48 and 24 Ma. In the Black Dome area (~240 km north of Vancouver), the Eocene volcanic rocks are mainly continental margin calc-alkaline andesite and dacite, resulting from the melting of a juvenile mafic source at the base of the crust. In contrast, the Miocene volcanic rocks resemble continental flood basalts. Both Eocene and Miocene rocks from the Black Dome volcanic complex have high positive εNd values (+7.2 to +7.4 and +6.4 to +7.6, respectively) and low initial Sr isotopic ratios (0.702 516 – 0.703 528 and 0.703 376 – 0.703 392, respectively) comparable to modern oceanic basalts. The onset of the hiatus in magmatism at 48 Ma coincides with capture of the Kula Plate by the Pacific Plate resulting in a change in convergence direction with the North American Plate from orthogonal to margin-parallel. The margin-parallel motion is inferred to have removed a 50–100 km sliver of the Eocene forearc that formed the boundary between the Pacific and subducted Kula Plate. Reinitiation of arc magmatism at 24 Ma is related to subduction of the Farallon and associated plates and it superimposed back-arc tholeiitic magmatism on top of the Eocene arc.


1996 ◽  
Vol 33 (1) ◽  
pp. 103-116 ◽  
Author(s):  
R. A. Stevens ◽  
P. Erdmer ◽  
R. A. Creaser ◽  
S. L. Grant

Metamorphosed and ductilely deformed sedimentary, plutonic, and volcanic rocks of the Nisutlin and Anvil assemblages make up the Yukon–Tanana terrane in the Teslin tectonic zone study area. The Nisutlin assemblage consists of siliceous schist–quartzite and graphitic phyllite that share a primary depositional contact, and Early Mississippian tonalite to quartz diorite that intrudes the siliceous schist–quartzite and possibly the graphitic phyllite. The Anvil assemblage includes metagabbro and mafic schist–greenstone that share an intrusive contact relationship. Tonalite to quartz diorite of the Nisutlin assemblage is characterized by minor zircon inheritance with an average Proterozoic age, εNd(350 Ma) values of −2.5 to −6.2, and Nd model ages of 1.50–1.79 Ga. These data suggest that the magmatic bodies have inherited a component of continentally derived material. Primary contact relationships and age data indicate that the Nisutlin assemblage had formed by Mississippian time, and regional correlations show that this assemblage makes up a large part of the Yukon–Tanana terrane of southern Yukon. Assembly of the Nisutlin assemblage by Mississippian time indicates that it did not form as a late Paleozoic and early Mesozoic subduction melange, and it suggests that its tectonic fabrics did not result from the progressive growth of a Permo-Triassic subduction complex. We suggest that the Nisutlin assemblage was part of a crustal block that lay outboard of North America in Mississippian time, and that it lay in the hanging-wall plate of a Permo-Triassic subduction zone as a relatively coherent assemblage, rather than forming within the zone as a subduction complex.


2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


Sign in / Sign up

Export Citation Format

Share Document