The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes

2019 ◽  
Vol 157 (10) ◽  
pp. 1547-1567 ◽  
Author(s):  
Sofie Lindström ◽  
Morten Bjerager ◽  
Peter Alsen ◽  
Hamed Sanei ◽  
Jørgen Bojesen-Koefoed

AbstractSmithian–lower Anisian strata in Peary Land, North Greenland, were deposited at ∼45° N on the northern margin of Pangaea in offshore to upper shoreface settings. The well-constrained succession (palynology and ammonite biostratigraphy) documents a remarkable shift from lycophyte spore-dominated assemblages in the upper Smithian to gymnosperm pollen-dominated ones in the lower Spathian in concert with a marked shift of +6 ‰ in δ13Corg. Correlation with other Smithian–Spathian boundary sections that record terrestrial floral changes indicates that the recovery of gymnosperms began earlier in the mid-latitudes of the Southern Hemisphere than in the Northern Hemisphere. The lycophyte-dominated Late Smithian Thermal Maximum is here interpreted as reflecting dry and hot climatic conditions with only brief seasonal precipitation unable to sustain large areas of gymnosperm trees, but able to revive dehydrated lycophytes. This suggests that the Late Smithian Thermal Maximum was a time of widespread aridity, which is also supported by red bed deposition in many areas globally, even as far south as Antarctica. The shift to gymnosperm-dominated vegetation during the cooling across the Smithian–Spathian boundary reflects a change to seasonally more humid climatic conditions favouring gymnosperm recovery, and could have been initiated by increased albedo over land due to the widespread aridity during the Late Smithian Thermal Maximum. The recovery of gymnosperm vegetation would have helped to draw down CO2 from the atmosphere and exacerbate global cooling.

Author(s):  
Tiago Castro Silva ◽  
Lara Gomes Côrtes ◽  
Marinez Ferreira de Siqueira

Protected areas act as pillars on which conservation strategies are built. Besides human activities, global climate changes are an additional concern to species’ conservation. In northeastern Brazil, climate change should lead to a replacement of the current native vegetation by semi-desert vegetation. This study evaluates whether the protected areas of the Caatinga can contribute to the maintenance of suitable climatic conditions for endangered birds over time in the face of global climate changes and land cover change. We used ecological niche models as input layers in a spatial prioritization program, in which stability indices were used to weight the targets. Results predicted that most taxa (18) will have their suitability lowered in the future, and all taxa (23) will have their ecological niche geographically displaced. However, our results showed that the Caatinga’s protected areas system integrated with a set of priority areas can maintain suitable climatic conditions for endangered birds in the face of climate change and land cover change. On average, Caatinga’s protected areas system could protect climatic stability areas at least 1.7 times greater than the scenarios without it. This reinforces the importance of protected areas as a biodiversity conservation strategy. 
  


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


2006 ◽  
Vol 411 (2) ◽  
pp. 1485-1488 ◽  
Author(s):  
I. I. Mokhov ◽  
A. V. Chernokulsky ◽  
I. M. Shkolnik

Author(s):  
А.А. Лагутин ◽  
Н.В. Волков ◽  
Е.Ю. Мордвин

Представлены результаты исследований влияния глобальных климатических изменений системы Земля на климат Западной Сибири. Для установления зон региона, в которых к середине XXI в. прогнозируются изменения, использовались модельные данные региональной климатической модели RegCM4 и принятые в этом классе задач стандартизованные евклидовы расстояния между характеристиками климата для двух состояний климатической системы — современного и будущего. Установлены зоны Западной Сибири, в которых в рамках сценариев RCP 4.5 и RCP 8.5 возможной эволюции глобальной системы к 2050 г. прогнозируются изменения климата. Purpose. An analysis of the influence of a global climate changes on the climate of Western Siberia, determination of zones of the region where changes are expected in the middle of the twenty-first century. Methodology. Results obtained using the model data of the regional climate model RegCM4 and the standardized Euclidean distances between climate characteristics. Findings, originality. Simulations of the climate characteristics for the two states of the climate system — contemporary and future — have been carried out. The zones of Western Siberia region, in which climate change is expected in the framework of RCP 4.5 and RCP 8.5 radiative forcing scenarios by the 2050, have been determined.


2012 ◽  
Vol 61-64 ◽  
pp. 73-84 ◽  
Author(s):  
Sergey A. Gorbarenko ◽  
Naomi Harada ◽  
Mikhail I. Malakhov ◽  
Tatyana A. Velivetskaya ◽  
Yuriy P. Vasilenko ◽  
...  

Author(s):  
E.N. Kondratyev ◽  

Today, global climate changes are taking place, leading to changes in the habitats of many species, including organisms of epidemiological importance. The transfer of such organisms will primarily involve the blood-sucking parasites of migratory birds. The sand martin (Riparia riparia Linnaeus, 1758) is one of many migratory birds nesting in the Saratov region. In order to understand how much the species is involved in the transmission of infection and the creation of a new focal point of infection, it is necessary to establish the taxonomic structure of the nidicol fauna.


Sign in / Sign up

Export Citation Format

Share Document