scholarly journals Geochronology, geochemistry and tectonic implications of early Carboniferous plutons in the southwestern Alxa Block

2021 ◽  
pp. 1-17
Author(s):  
Zeng-Zhen Wang ◽  
Xuan-Hua Chen ◽  
Zhao-Gang Shao ◽  
Bing Li ◽  
Hong-Xu Chen ◽  
...  

Abstract The southeastern Central Asian Orogenic Belt (CAOB) records the assembly process between several micro-continental blocks and the North China Craton (NCC), with the consumption of the Paleo-Asian Ocean (PAO), but whether the S-wards subduction of the PAO beneath the northern NCC was ongoing during Carboniferous–Permian time is still being debated. A key issue to resolve this controversy is whether the Carboniferous magmatism in the northern NCC was continental arc magmatism. The Alxa Block is the western segment of the northern NCC and contiguous to the southeastern CAOB, and their Carboniferous–Permian magmatism could have occurred in similar tectonic settings. In this contribution, new zircon U–Pb ages, elemental geochemistry and Sr–Nd isotopic analyses are presented for three early Carboniferous granitic plutons in the southwestern Alxa Block. Two newly identified aluminous A-type granites, an alkali-feldspar granite (331.6 ± 1.6 Ma) and a monzogranite (331.8 ± 1.7 Ma), exhibit juvenile and radiogenic Sr–Nd isotopic features, respectively. Although a granodiorite (326.2 ± 6.6 Ma) is characterized by high Sr/Y ratios (97.4–139.9), which is generally treated as an adikitic feature, this sample has highly radiogenic Sr–Nd isotopes and displays significantly higher K2O/Na2O ratios than typical adakites. These three granites were probably derived from the partial melting of Precambrian continental crustal sources heated by upwelling asthenosphere in lithospheric extensional setting. Regionally, both the Alxa Block and the southeastern CAOB are characterized by the formation of early Carboniferous extension-related magmatic rocks but lack coeval sedimentary deposits, suggesting a uniform lithospheric extensional setting rather than a simple continental arc.

2021 ◽  
Author(s):  
Ariuntsetseg Ganbat ◽  
Tatsuki Tsujimori ◽  
Laicheng Miao ◽  
Inna Safonova ◽  
Daniel Pastor-Galán ◽  
...  

The Mongol–Okhotsk Belt, the youngest segment of the Central Asian Orogenic Belt, formed by the evolution and closure of the Mongol–Okhotsk Ocean. The oceanic closure formed two volcanoplutonic belts: Selenge Belt in the north and Middle Gobi Belt in the south (in present day coordinates). However, the origin and tectonic evolution of the Mongol–Okhotsk Belt in general, the origin and formation age of the Middle Gobi Belt in particular, remain enigmatic. To better understand the history of the magmatic activity in the Middle Gobi Belt, we conducted geochemical, U–Pb geochronological, zircon Hf, whole-rock Nd isotopic analyses of volcanic and plutonic rocks of the Mandalgovi suite, the major component of the Middle Gobi Belt. Our results show that the Mandalgovi suite consists of (i) 265 ± 2 Ma biotite-granite; (ii) 250 ± 3 Ma hornblende-granitoids; (iii) their volcanic equivalents of both: and (iv) gabbro-diorites. The geochemical compositions indicate that their precursor magmas were derived from crustal source. The protoliths of the biotite and hornblende-granitoids were metagraywacke and metabasalt, respectively. They are characterized by positive whole-rock εNd(t) and zircon εHf(t) values, indicating the molten protoliths were juvenile crust. The biotite-granites formed by remelting of fore-arc sediments by ridge subduction and later hornblende-granites were emplaced at an intra-oceanic arc by the subduction of the Mongol–Okhotsk Ocean. We conclude that the magmatic rocks of the Middle Gobi formed in an active continental margin and/or intra-oceanic arc setting.


2020 ◽  
Vol 157 (11) ◽  
pp. 1877-1897 ◽  
Author(s):  
J.-X. Wang ◽  
K.-X. Zhang ◽  
Brian F. Windley ◽  
B.-W. Song ◽  
X.-H. Kou ◽  
...  

AbstractAccretionary orogens contain key evidence for the conversion of oceanic to continental crust. The late tectonic history and closure time of the Palaeo-Asian Ocean are recorded in the Mazongshan subduction–accretion complex in the southern Beishan margin of the Central Asian Orogenic Belt. We present new data on the structure, petrology, geochemistry and zircon U–Pb isotope ages of the Mazongshan subduction–accretion complex, which is a tectonic mélange with a block-in-matrix structure. The blocks are of serpentinized peridotite, basalt, gabbro, basaltic andesite, chert and seamount sediments within a matrix that is mainly composed of fore-arc-trench turbidites. U–Pb zircon ages of two gabbros are 454.6 ± 2.5 Ma and 434.1 ± 3.6 Ma, an andesite has a U–Pb zircon age of 451.3 ± 3.5 Ma and a tuffaceous slate has the youngest U–Pb zircon age of 353.6 ± 5.1 Ma. These new isotopic ages, combined with published data on ophiolitic mélanges from central Beishan, indicate that the subduction–accretion of Beishan in the southernmost Central Asian Orogenic Belt lasted until Late Ordovician – Early Carboniferous time. Structure and age data demonstrate that the younging direction of accretion was southwards and that the subduction zone dipped continuously to the north. Accordingly, these results record the conversion of oceanic to continental crust in the southern Beishan accretionary collage.


2020 ◽  
Author(s):  
Maohui Ge ◽  
Jinjiang Zhang ◽  
Long Li ◽  
Kai Liu

<p>NE China recorded the key tectonic evolution history of the Eurasian Plate from the Paleozoic-Mesozoic<br>collisional formation of the Central Asian Orogenic Belt to the Mesozoic subduction of the Paleo-Pacific Ocean.<br>To better understand this tectonic transition, it is crucial to constrain the time and pattern of the initial subduc-<br>tion of the Paleo-Pacific Ocean. Recently, someresearchers proposed that theMudanjiang Ocean existed between<br>the Songnen and Jiamusi blockswas part of the Paleo-Pacific Ocean. Here, through geochemical and geochrono-<br>logical studies on the widespread granitoids in the Lesser Xing'an-Zhangguangcai Range in the eastern Songnen<br>Block, we verify that these magmatic rocks show volcanic arc affinity with increased mantle contribution from<br>east to thewest of the range, likely related to a flattening subduction of theMudanjiang Ocean. In addition, a uni-<br>versal westward younging trend for over 70 Myr can be observed for the granitoids throughout the Lesser<br>Xing'an-ZhangguangcaiRange, indicating a long-lastingsubductionof theMudanjiangOcean.More interestingly,<br>the oldest ages of the granitoids in the east display a northward younging trend from275Ma to 218Ma, suggest-<br>ing that the subduction of the Mudanjiang Ocean had been initiated at latest by 275 Ma in the south and then<br>progressively expanded to the north. Based on these observations, we proposed a new tectonic evolution<br>model for theMudanjiang Ocean, i.e., a Triassic-Jurassicwestward scissor-like subduction and closure, to contrib-<br>ute to the understanding of the early subduction of the Paleo-PacificOcean</p>


Palaeobotany ◽  
2019 ◽  
Vol 10 ◽  
pp. 13-179
Author(s):  
L. B. Golovneva

The Chingandzha flora comes from the volcanic-sedimentary deposits of the Chingandzha Formation (the Okhotsk-Chukotka volcanic belt, North-East of Russia). The main localities of the Chingandzha flora are situated in the Omsukchan district of the Magadan Region: on the Tap River (basin of the middle course of the Viliga River), on the Kananyga River, near the mouth of the Rond Creek, and in the middle reaches of the Chingandzha River (basin of the Tumany River). The Chingandzha flora includes 23 genera and 33 species. Two new species (Taxodium viligense Golovn. and Cupressinocladus shelikhovii Golovn.) are described, and two new combinations (Arctopteris ochotica (Samyl.) Golovn. and Dalembia kryshtofovichii (Samyl.) Golovn.) are created. The Chingandzha flora consists of liverworts, horsetails, ferns, seed ferns, ginkgoaleans, conifers, and angiosperms. The main genera are Arctop teris, Osmunda, Coniopteris, Cladophlebis, Ginkgo, Sagenoptepis, Sequoia, Taxodium, Metasequoia, Cupressinocladus, Protophyllocladus, Pseudoprotophyllum, Trochodendroides, Dalembia, Menispermites, Araliaephyllum, Quereuxia. The Chingandzha flora is distinct from other floras of the Okhotsk-Chukotka volcanic belt (OCVB) in predominance of flowering plants and in absence of the Early Cretaceous relicts such as Podozamites, Phoenicopsis and cycadophytes. According to its systematic composition and palaeoecological features, the Chingandzha flora is similar to the Coniacian Kaivayam and Tylpegyrgynay floras of the North-East of Russia, which were distributed at coastal lowlands east of the mountain ridges of the OCVB. Therefore, the age of the Chingandzha flora is determined as the Coniacian. This flora is assigned to the Kaivayam phase of the flora evolution and to the Anadyr Province of the Siberian-Canadian floristic realm. The Chingandzha flora is correlated with the Coniacian Aleeky flora from the Viliga-Tumany interfluve area and with other Coniacian floras of the OCVB: the Chaun flora of the Central Chukotka, the Kholchan flora of the Magadan Region and the Ul’ya flora of the Ul’ya Depression.


2017 ◽  
Author(s):  
Kirsten B. Sauer ◽  
◽  
Stacia M. Gordon ◽  
Robert B. Miller ◽  
Jeffrey Vervoort ◽  
...  

2020 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
et al.

Table S1: Summary of the samples and sampling positions in this study (sampling sites are marked in Fig. 3); Table S2: U-Pb age data for zircons of (meta-)sedimentary and volcanic rocks in this study; Table S3: Lu-Hf isotopic data for zircons of (meta-)sedimentary and volcanic rocks in this study.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 388
Author(s):  
Andrea Bazzano ◽  
Stefano Bertinetti ◽  
Francisco Ardini ◽  
David Cappelletti ◽  
Marco Grotti

Lead content, enrichment factors, and isotopic composition (208Pb/206Pb and 207Pb/206Pb) measured in atmospheric particulate matter (PM10) samples collected for nine years at Ny-Ålesund (Svalbard islands, Norwegian Arctic) during spring and summer are presented and discussed. The possible source areas (PSA) for particulate inferred from Pb isotope ratio values were compared to cluster analysis of back-trajectories. Results show that anthropogenic Pb dominates over natural crustal Pb, with a recurring higher influence in spring, compared to summer. Crustal Pb accounted for 5–16% of the measured Pb concentration. Anthropogenic Pb was affected by (i) a Central Asian PSA with Pb isotope signature compatible with ores smelted in the Rudny Altai region, at the Russian and Kazakhstan border, which accounted for 85% of the anthropogenic Pb concentration, and (ii) a weaker North American PSA, contributing for the remaining 15%. Central Asian PSA exerted an influence on 71–86% of spring samples, without any significant interannual variation. On the contrary, 59–87% of summer samples were influenced by the North American PSA, with higher contributions during 2015 and 2018. Back-trajectory analysis agreed on the seasonal difference in PSA and highlighted a possible increased influence for North American air masses during summer 2010 and 2018, but not for summer 2015.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
Vera A. Trunilina ◽  
Andrei V. Prokopiev

This paper reports the results of a study of magmatic rocks with Sn–W–Au–Ag mineralization from the Kuranakh, Elikchan, and Istekh ore fields in the Northern batholith belt of the north-eastern Verkhoyansk–Kolyma orogenic belt in Eastern Russia. Using petrographic, mineralogical, geochemical, and isotopic methods, we determined the mineral compositions, petrochemistry, and geochemistry of magmatic rocks, the P–T conditions of their generation and crystallization, and their geodynamic affinity. The studied magmatic rocks have common geochemical characteristics that likely reflect the influence of fluids supplied from a long-lived, deep-seated mantle source. The ore fields are characterized by Sn–W–Au–Ag–Pb polygenetic mineralization. The magmatic and metallogenic evolution comprised five stages for the formation of magmatic rocks and ores. During the first stage (Berriasian–Barremian), arc-related magmatic rocks formed in an active continental margin setting and were associated with Au–Ag mineralization. The second, third, and fourth stages (Aptian–Campanian) took place in a crustal extension and rift setting, and were accompanied by Au–Ag and Sn–W mineralization. During the fifth (post-magmatic) stage, Sn–Ag–Sb and Pb–Ag mineralization occurred.


Sign in / Sign up

Export Citation Format

Share Document