scholarly journals CELLULAR AUTOMATA OVER ALGEBRAIC STRUCTURES

2021 ◽  
pp. 1-14
Author(s):  
ALONSO CASTILLO-RAMIREZ ◽  
O. MATA-GUTIÉRREZ ◽  
ANGEL ZALDIVAR-CORICHI

Abstract Let G be a group and A a set equipped with a collection of finitary operations. We study cellular automata $$\tau :{A^G} \to {A^G}$$ that preserve the operations AG of induced componentwise from the operations of A. We show τ that is an endomorphism of AG if and only if its local function is a homomorphism. When A is entropic (i.e. all finitary operations are homomorphisms), we establish that the set EndCA(G;A), consisting of all such endomorphic cellular automata, is isomorphic to the direct limit of Hom(AS, A), where S runs among all finite subsets of G. In particular, when A is an R-module, we show that EndCA(G;A) is isomorphic to the group algebra $${\rm{End}}(A)[G]$$ . Moreover, when A is a finite Boolean algebra, we establish that the number of endomorphic cellular automata over AG admitting a memory set S is precisely $${(k|S|)^k}$$ , where k is the number of atoms of A.

The sixth chapter deals with the construction of pseudo-random number generators based on a combination of two cellular automata, which were considered in the previous chapters. The generator is constructed based on two cellular automata. The first cellular automaton controls the location of the active cell on the second cellular automaton, which realizes the local state function for each cell. The active cell on the second cellular automaton is the main cell and from its output bits of the bit sequence are formed at the output of the generator. As the first cellular automaton, an asynchronous cellular automaton is used in this chapter, and a synchronous cellular automaton is used as the second cellular automaton. In this case, the active cell of the second cellular automaton realizes another local function at each time step and is inhomogeneous. The algorithm for the work of a cell of a combined cellular automaton for implementing a generator and its hardware implementation are presented.


1963 ◽  
Vol 28 (3) ◽  
pp. 177-200 ◽  
Author(s):  
Aubert Daigneault

A basic concept of the theory of models is that of elementary equivalence of similar relational systems: two such systems are said to be elementarily equivalent if they satisfy the same first-order statements or, in other words, if they have the same (first-order) complete theory. It is possible to reformulate this notion of elementary equivalence of systems within the framework of algebraic logic by replacing theories by algebraic structures derived from them or more directly from the systems which are models of these theories. To any such theory T (or model of it), is indeed associated a locally finite polyadic algebra with equality, the underlying Boolean algebra of which is simply the well-known Tarski-Lindenbaum algebra of the theory. It is not hard to prove (see Section 6.1) that two systems are elementarily equivalent iff (i.e. if and only if) they have isomorphic polyadic. algebras. The possibility of replacing theories by algebraic structures and of reducing the purely logical concept of elementary equivalence to the algebraic one of isomorphism can be exploited to give a purely algebraic treatment of model-theoretic problems and suggests natural questions concerning these structures. The present paper illustrates that possibility.


The fifth chapter deals with the use of hybrid cellular automata for constructing high-quality pseudo-random number generators. A hybrid cellular automaton consists of homogeneous cells and a small number of inhomogeneous cells. Inhomogeneous cells perform a local function that differs from local functions that homogeneous cells realize. The location of inhomogeneous cells and the main cell is chosen in advance. The output of the main cell is the output of a pseudo-random number generator. A hardware implementation of a pseudo-random number generator based on hybrid cellular automata is described. The local function that an inhomogeneous cell realizes is the majority function. The principles of constructing a pseudo-random number generator based on cellular automata with inhomogeneous neighborhoods are described. In such cellular automata, inhomogeneous cells have a neighborhood whose shape differs from that of neighborhoods of homogeneous cells.


2021 ◽  
Vol 66 (3) ◽  
pp. 721-746
Author(s):  
Andrew Schumann

Abstract In this paper, I show that a kind of perfect logical competence is observed in the Babylonian tablets used for forecasting. In these documents, we see an intuition of some algebraic structures that are used for inferring prognoses as logical conclusions. The paper is based mainly on the omen series reconstructed by N. De Zorzi. It is shown that in composing these divination lists there was implicitly used the Boolean algebra.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2747-2760
Author(s):  
Rajab Borzooei ◽  
Narges Akhlaghinia ◽  
Xiao Xin ◽  
Mona Kologani

EQ-algebras were introduced by Nov?ak in [16] as an algebraic structure of truth values for fuzzy type theory (FTT). Nov?k and De Baets in [18] introduced various kinds of EQ-algebras such as good, residuated, and lattice ordered EQ-algebras. In any logical algebraic structures, by using various kinds of filters, one can construct various kinds of other logical algebraic structures. With this inspirations, by means of fantastic filters of EQ-algebras we construct MV-algebras. Also, we study prelinear EQ-algebras and introduce a new kind of filter and named it prelinear filter. Then, we show that the quotient structure which is introduced by a prelinear filter is a distributive lattice-ordered EQ-algebras and under suitable conditions, is a De Morgan algebra, Stone algebra and Boolean algebra.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-205-Pr3-212
Author(s):  
G. Ch. Sirakoulis ◽  
I. Karafyllidis ◽  
A. Thanailakis
Keyword(s):  

1998 ◽  
Vol 4 (4) ◽  
pp. 49-54
Author(s):  
V.А. Val'kovskii ◽  
◽  
D.D. Zerbino ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document