Nitrogen and phosphorus fertilizer sources and placement methods in maize (Zea mays L.) using labelled fertilizers

1983 ◽  
Vol 101 (3) ◽  
pp. 687-690 ◽  
Author(s):  
E. P. Papanicolaou ◽  
V. D. Skarlou ◽  
C. Nobeli ◽  
N. S. Katranis

SUMMARYThe influence of various nitrogen and phosphorus sources, applied at the preseeding stage with two placement methods, on maize yield and fertilizer utilization, was studied in two field experiments and a pot experiment with a calcareous, heavy to medium heavy textured recent alluvial soil.Phosphorus alone had no effect on crop yield. Nitrogen alone or nitrogen (various forms) and phosphorus had a clear positive effect on crop yield. As to the various sources the observed differences in the crop yield of the field experiments were not significant, while in the pot experiment ammonium sulphate gave the highest yields.The data on the phosphate concentrations in the tops derived from phosphate fertilizer (Pf) indicate that the presence of nitrogen increased the utilization of phosphorus fertilizer. From the tested placement methods the incorporation method appears clearly superior in the pot experiment with a similar trend in the field experiment for all sources except ammonium phosphate-sulphate.The utilization coefficients of the nitrogen fertilizer sources suggest that ammonium and urea were better utilized than nitrates, that the higher nitrogen utilization reflected higher yields and that phosphorus fertilizer exerted a beneficial effect on nitrogen fertilizer utilization. Finally they suggest that the addition of 120 kg N/ha enhanced the amount of soil nitrogen taken up in the maize grain by 53%.

1985 ◽  
Vol 104 (3) ◽  
pp. 529-534
Author(s):  
E. P. Papanicolaou ◽  
V. D. Skarlou ◽  
C. Nobeli ◽  
N. S. Katranis

SummaryIn this study two field experiments were conducted on a heavy to medium heavy, calcareous, recent alluvial soil of Central Greece. The main aim of these experiments was to study the effect of the most common nitrogen sources, applied in one or two doses, on maize growth and fertilizer utilization. Foliar application of urea was also a treatment included in these experiments.Phosphorus alone had no significant effect on maize yield. Nitrogen (various forms), alone or in combination with phosphorus, increased the yield and nitrogen content of maize. Maize yield was not significantly affected by the form of nitrogen or by dividing the application of nitrogen. Foliar applications of urea were as effective as soil applications in increasing maize grain yields.The percentage of fertilizer nitrogen taken up (utilization coefficient) ranged between ca. 58% for sodium nitrate and ammonium nitrate, and ca. 39% for ammonium sulphate and urea, when the fertilizers were applied about 10 weeks after sowing. Foliar urea was nearly as efficiently utilized as urea applied as a sidedressing. Application of the tested fertilizers before sowing was nearly as efficient as or more efficient than application of the fertilizers as a sidedressing at 70 cm plant height (38 days after sowing). Finally, addition of 120 kg N/ha enhanced the amount of soil nitrogen taken up in the maize crop by 33%.


2016 ◽  
Author(s):  
Jinniu Wang ◽  
Bo Xu ◽  
Yan Wu ◽  
Jing Gao ◽  
Fusun Shi

Abstract. Litters of reproductive organs have been rarely studied, despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. Carbon, nitrogen, phosphorus, lignin, cellulose, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on soil nutrition pool by comparison between the treated and control samples. Litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10%–40% of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C/N, N/P, lignin/N, and lignin and cellulose concentrations than leaf litter. Flower litter fed soil nutrition pool more efficiently because of their faster decomposition rate and higher nutrient contents. Litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decomposes approximately three times faster than mixed litters within 50 days. Moreover, the findings of the pot experiment indicated that flower litter addition significantly increased the available nutrient pool. Flower litter influenced nutrition cycling in alpine ecosystems, as evident by its non-ignorable production and significantly faster decomposition. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.


2021 ◽  
pp. 13-20
Author(s):  
Igor Vasilievich Sinyavskiy ◽  
Aleksey Mikhailovich Plotnikov ◽  
Andrey Viktorovich Sozinov ◽  
Natalya Dmitrievna Gushchenskaya

1976 ◽  
Vol 27 (6) ◽  
pp. 755 ◽  
Author(s):  
KC Hodgkinson

The effects of extent and frequency of defoliation on the growth and survival of Danthonia caespitosa were measured in a series of field experiments. Additional treatments, of summer irrigation and application of nitrogen and phosphorus fertilizer, were included in some of the experiments to assess how they modified the effects of defoliation. During the summer, complete defoliation increased the shoot yield of plants which had not been irrigated, but yield was decreased in the irrigated treatments. Frequent, partial defoliation increased yields of irrigated plants but decreased yields of plants not irrigated. Depression of yields was caused by both tiller death and reduced regrowth of individual tillers. In an experiment lasting 2 years, plants were completely defoliated monthly, bimonthly or tri-monthly or left intact, and shoot yields, tillering characteristics and plant survival under the treatments were compared. Monthly defoliation depressed yields and rate of tillering and accelerated the death rate of plants, particularly during the summer and autumn periods. Plants also died when cut bimonthly but the rate was slower. Plants irrigated during the first summer generally died at a faster rate than plants not irrigated. Tillering was more rapid during the autumn and early winter months. Midwinter application of fertilizer to plants cut bimonthly greatly stimulated shoot yields and seed production in the spring but not in the following year. Examination of tiller apices showed that floral induction took place prior to the beginning of July. Many apices were elevated above the 'grazing level' by early September, and flowering and seed set occurred in October.


1978 ◽  
Vol 18 (93) ◽  
pp. 554 ◽  
Author(s):  
RJK Myers

Responses of dryland grain sorghum to applied nitrogen were examined in three field experiments at Katherine, Northern Territory, in 1969-70, 1970-71 and 1971-72. Rates of nitrogen up to 89 kg ha-1 in the first season and up to 200 kg ha-1 in subsequent seasons were used. The crops were sampled at floral initiation, mid-elongation, anthesis, and maturity. The three growing seasons were rated as below average, above average and average, respectively, for grain sorghum production. Nitrogen response was strongly season-dependent, Maximum yields (adjusted to 14 per cent moisture) were: 1969-70, 2280 kg ha-1, with 22.4 kg N ha-1 applied (with lower yields at higher rates of nitrogen) ; 1970-71,7730 kg ha-1 with 150 kg N ha-1 applied; and 1971-72,4440 kg ha-1 with 200 kg N ha-1 applied. These represented increases of 6, 50, and 62 per cent, respectively, over the zero nitrogen treatments. Applied nitrogen increased grain numbers per head and individual grain weight, but had no significant effect on head numbers. Applied nitrogen increased yields of nitrogen and phosphorus in plant material, and increased nitrogen concentration in plant parts. Apparent recoveries of nitrogen fertilizer ranged from 0 to 40 per cent, depending on year and rate applied. An approximate balance sheet suggested substantial losses from the mineral nitrogen pool in 1970- 71, a year of above average rainfall. Significant interactions between nitrogen and phosphorus fertilizer occurred only with grains per head and thousand grain weight.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1544
Author(s):  
Ting Wang ◽  
Ningping Ding ◽  
Lili Li ◽  
Xiaodong Lyu ◽  
Qiang Chai ◽  
...  

Basic soil productivity (BSP) is the ability of a soil, in its normal environment to support plant growth. However, the assessment of BSP remains controversial. The aim of this study is to quantify and analyze the trends of BSP in winter wheat seasons using the decision support system for agrotechnologie transfer (DSSAT) model under a long-term fertilization experiment in the dark loessal soil region of the Loess Plateau of China. In addition, we evaluated the contribution percentage of BSP to yield and its influencing factors. A long-term fertilization experiment with a winter wheat/spring maize rotation was established in 1979 in a field of the Gaoping Agronomy Farm, Pingliang, Gansu, China, including six treatments: (1) no fertilizer as a control (CK), (2) chemical nitrogen fertilizer input annually (N), (3) chemical nitrogen and phosphorus fertilizer input annually (NP), (4) straw return and chemical nitrogen fertilizer input annually plus phosphorus fertilizer added every second year (SNP), (5) manure input annually (M), and (6) M plus N and P fertilizers added annually (MNP). The application of the DSSAT-CERES-Wheat model showed a satisfactory performance with good Wilmott d-index (0.78~0.95) and normalized root mean square error (NRMSE) (7.03%~18.72%) values for the tested genetic parameters of winter wheat. After the 26-years experiment, the yield by BSP of winter wheat under the M and MNP treatment significantly increased, at the rate of 2.7% and 3.82% a year, respectively, whereas that of CK and N treatments significantly decreased, at the rate of 0.23% and 3.03%. Moreover, the average contribution percentage of BSP to yield was 47.0%, 39.4%, 56.3%, 50.0%, and 61.9% in N, NP, SNP, M, and MNP treatments, respectively. In addition, soil organic carbon contents were the main controls of BSP under the different fertilization conditions in the dark loessial soil area. As a result, the combined application of organic fertilizer or straw and chemical fertilizer can be an effective form of fertilization management to greatly enrich basic soil productivity, continually promote the contribution percentage of BSP, and ultimately increase crop yield.


1978 ◽  
Vol 18 (91) ◽  
pp. 262 ◽  
Author(s):  
GJ Tupper

The residual effects of nitrogen and phosphorus fertilizers applied over four consecutive years and gypsum applied once only, were assessed over five years on a Danthonia caespitosa-Stipa variabilis grassland, growing on the semi-arid Riverine Plain of south-eastern Australia. Totals of 155 and 31 0 kg ha-1 of N, 100 and 200 kg ha-1 of P, and 3.34 and 6.68 t ha-1 of CaS0,. 2H2O had been added. The increase in dry matter production in response to nitrogen ceased one year after the last application of nitrogen fertilizer. After five years, grassland which had received 200 kg ha-1 of phosphorus and 6.68 t ha-1 of gypsum yielded 6500 kg ha-1 of dry matter, compared with 1300 kg ha-1 in the absence of fertilizers and gypsum. Legume growth was still suppressed five years after nitrogen fertilizer had been applied, but legumes increased production greatly in response to the previous phosphorus and phosphorus-gypsum treatments. Nitrogen content of the herbage averaged 2.1 per cent four years after the previous high level phosphorus treatment, compared with 1.6 per cent with the control after four years. It was unaffected by previous nitrogen fertilizer. Phosphorus content was reduced for the first three years after nitrogen fertilizer was last added, but was increased by phosphorus fertilizer to 0.28 per cent, compared with 0.1 8 per cent on the control, four years after phosphorus fertilizer was last added. Soil moisture characteristics, and total soil nitrogen and carbon showed no differences between treatments. The Truog phosphorus in the soil under the high phosphorus level decreased from 103 p.p.m. to 53 p.p.m., compared with the unaltered control level of 7 p.p.m, over the five year period.


Author(s):  
Yohannes Gebremichael ◽  
Gebremedhen Gebretsadikan

A field experiment was conducted to study the effect of different nitrogen and phosphorus fertilizer rates on the growth and yield tomato at Northwestern Zone of Tigray during 2016-2017 cropping season under irrigation condition. It  is  the  most  cultivated  and  high  market  value  of  vegetable crops  in  Tigray  Northern Ethiopia. However, tomato production is limited due to low fertility of soil and inappropriate fertilizer rate. Six different levels of nitrogen (0, 23, 46, 69, 92 and 115 kg N /ha) and six different levels of phosphorus (0, 46, 69, 92,115 and 138 kg P2O5/ ha) were used and laid out in randomized complete block design with three replication. (Melkasalsa) tomato variety was used as a testing variety. The current findings showed that the highest marketable tomato fruit yield (61.16 t/ha) were obtained in 115 kg N/ha (250 kg urea/ha) and 92 kg P2O5 (200 kg Di Ammonium Phosphate DAP /ha).  But, the profitable yield obtained was at N2P2 (46 kg N & 69 P2O5 kg ha-1) that is 100 kg/ha of Urea combined with 150 kg/ha of DAP yield was obtained 48.25 t ha-1 and the profit was 235502 birr per ha with the maximum Marginal Rate of Return of 26.16%. Therefore, 100 kg/ha of urea with 150 kg/ha of DAP was recommended for the growers to improve tomato fruit productivity in the study area.


1987 ◽  
Vol 108 (2) ◽  
pp. 361-364 ◽  
Author(s):  
S. K. Kaushik ◽  
R. C. Gautam

SummaryResults are described of an experiment involving various pearl millet–cow pea or green gram planting and interplanting systems under four levels of nitrogen and two levels of phosphorus. Planting of pearl millet in paired rows of 30 and 70 cm gave as much yield as normal planting in uniform rows of 50 cm. The productivity per unit area was increased considerably when pearl millet was interplanted with one row of cow pea or green gram. Cow pea gave higher yield than green gram. Nitrogen fertilizer increased pearl millet as well as intercrops yield significantly. Pearl millet responded up to 60 kg N/ha and intercrops up to 30 kg N/ha. Phosphorus fertilizer did not produce marked improvement in either growth or yield of pearl millet. Application of 40 kg P2O5/ha increased grain yield of intercrops significantly


Sign in / Sign up

Export Citation Format

Share Document