scholarly journals Simulating the Impact of Long-Term Fertilization on Basic Soil Productivity in a Rainfed Winter Wheat System

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1544
Author(s):  
Ting Wang ◽  
Ningping Ding ◽  
Lili Li ◽  
Xiaodong Lyu ◽  
Qiang Chai ◽  
...  

Basic soil productivity (BSP) is the ability of a soil, in its normal environment to support plant growth. However, the assessment of BSP remains controversial. The aim of this study is to quantify and analyze the trends of BSP in winter wheat seasons using the decision support system for agrotechnologie transfer (DSSAT) model under a long-term fertilization experiment in the dark loessal soil region of the Loess Plateau of China. In addition, we evaluated the contribution percentage of BSP to yield and its influencing factors. A long-term fertilization experiment with a winter wheat/spring maize rotation was established in 1979 in a field of the Gaoping Agronomy Farm, Pingliang, Gansu, China, including six treatments: (1) no fertilizer as a control (CK), (2) chemical nitrogen fertilizer input annually (N), (3) chemical nitrogen and phosphorus fertilizer input annually (NP), (4) straw return and chemical nitrogen fertilizer input annually plus phosphorus fertilizer added every second year (SNP), (5) manure input annually (M), and (6) M plus N and P fertilizers added annually (MNP). The application of the DSSAT-CERES-Wheat model showed a satisfactory performance with good Wilmott d-index (0.78~0.95) and normalized root mean square error (NRMSE) (7.03%~18.72%) values for the tested genetic parameters of winter wheat. After the 26-years experiment, the yield by BSP of winter wheat under the M and MNP treatment significantly increased, at the rate of 2.7% and 3.82% a year, respectively, whereas that of CK and N treatments significantly decreased, at the rate of 0.23% and 3.03%. Moreover, the average contribution percentage of BSP to yield was 47.0%, 39.4%, 56.3%, 50.0%, and 61.9% in N, NP, SNP, M, and MNP treatments, respectively. In addition, soil organic carbon contents were the main controls of BSP under the different fertilization conditions in the dark loessial soil area. As a result, the combined application of organic fertilizer or straw and chemical fertilizer can be an effective form of fertilization management to greatly enrich basic soil productivity, continually promote the contribution percentage of BSP, and ultimately increase crop yield.

2020 ◽  
pp. 77-85
Author(s):  
Evelin Kármen Juhász ◽  
Andrea Balláné Kovács

The objective of this study was to evaluate the impact of long term NPK fertilization (considering that S containing superphosphate was supplied for 26 years of experiment, but since 9 years S has not used any longer) on sulphur- and nitrogen content and N/S ratio of winter wheat. The second objective of this work was to determine the changes of the amount of the different nitrogen and sulphur fraction in chernozem soil in a long term fertilization experiment. The third aim of the work was to determine if a relationship could be established between the studied parameters. Based on our results, it can be stated that the sulphur containing superphosphate supplied in the period of 1984-2010 has no longer significant effect on total sulphur content of plant in 2018. The NPK fertilization treatments had positive effect on total nitrogen content of winter wheat. In general, increasing NPK doses resulted in significantly higher nitrogen. The effect of irrigation applied in previous years has no statistically significant effect on the sulphur and nitrogen content of wheat. The wheat grain produced in our experiment, especially in fertilized treatments showed S deficiency. Analysing the changes of CaCl2 soluble nitrate-N and total N of the soil, it can be stated that the effect of increasing fertilizer doses clearly appears in these parameters, because the treatment with increasing fertilizer doses resulted higher CaCl2 soluble N forms compared to the control treatment in soil. These values increased until flowering stage of wheat and after that a slightly decrease was observed as a result of higher N uptake of plant. In overall, it can be stated, that the effect of superphosphate on measured sulphur fraction is prevailed. With increasing fertilizer doses higher sulphate content was detected in soil, but the sulphate content measured in different soil extractant is not enough for the wheat in this experiment area. Studying the correlation between the measured parameters of plant and soil, it can be concluded, that the relationships between nitrogen in the plant and in the soil is stable, and did not change during the growing season. The correlation between plant S and soil S varied in the measured periods and the r value was low in most cases. At the stage of flowering the highest r value was found between KCl-SO4 and plant S. In the stage of ripening the strongest correlation was detected between KH2PO4-SO4 and grain S content.


2010 ◽  
Vol 113-116 ◽  
pp. 1332-1335 ◽  
Author(s):  
Ning Liu ◽  
Hong Bo He ◽  
Hong Tu Xie ◽  
Zhen Bai ◽  
Xu Dong Zhang

Fertilization is one of the essential managements to maintain and increase soil organic carbon (SOC) level in agroecosystems. It has been realized that fertilizer applications influenced the turnover of labile and refractory organic carbon pools in arable soil markedly. However, the dynamic of relatively refractory lignin in response to fertilization is still kept unclear. Therefore, the impact of long-term organic fertilization on the content and degradation degree of lignin in Mollisol was investigated. Lignin monomers were released by alkaline CuO oxidation method and quantified by gas chromatography (GC). At the time scale of decades, lignin was clearly accumulated in soil and the relative accumulation of lignin in SOC was evident after long-term organic fertilizer application. Compared with the unfertilized soil, lower acid to aldehyde ratios of vanillyl and syringyl units induced by organic fertilization suggested a lower degradation degree of lignin incorporated into soil to some extent. It could be concluded that long-term organic fertilization was an effective fertilizer practice for lignin accumulation in soil and SOC sequestration in Mollisol in northeast of China.


2012 ◽  
Vol 104 (5) ◽  
pp. 1223-1237 ◽  
Author(s):  
Peter Anthony ◽  
Gary Malzer ◽  
Mingchu Zhang ◽  
Stephen Sparrow

Plant Disease ◽  
2021 ◽  
Author(s):  
Yajiao Wang ◽  
Lijing Ji ◽  
Qiusheng Li ◽  
yu xing wu ◽  
Congcong Li ◽  
...  

On the North China Plain, one of the most water-deficient regions in China, bare fallow has been implemented over a large-scale area to conserve water during the growth season of water-intensive winter wheat since 2015. However, the effects of this bare fallow on fungal community and the occurrence of crop diseases are poorly understood. Here we measured soil chemical properties, fungal community composition and the occurrence of crop diseases after 15 years of long-term fallow (continuous maize or soybean) and non-fallow (maize-wheat rotation; soybean-wheat rotation) cropping systems. Bare fallow during the winter-wheat growth season significantly decreased soil organic matter, available nitrogen and phosphorus. It also changed the composition of soil fungal communities, i.e., increased relative abundances of some potentially pathogenic species of Lectera, Fusarium and Volutella but decreased beneficial Cladorrhium and Schizothecium. Meanwhile, the epidemic tendency of maize diseases changed correspondingly: the disease index of southern corn leaf blight and maize brown spot increased, but the incidence of stalk rot decreased compared with the non-fallow system. Soybean diseases were very mild regardless of the cropping system during the total experimental period. Network analysis demonstrated that the soil fungal diversity associated with maize diseases was affected by the decreased soil organic matter and available nitrogen and phosphorus. Our results suggest that bare fallow in winter-wheat season affected the soil chemical properties, fungal community and the occurrence of maize fungal diseases.


2019 ◽  
Vol 48 (4) ◽  
pp. 919-924
Author(s):  
Mahmudul Hasan ◽  
Md Kamal Uddin ◽  
Mahmud Tengku Muda Mohammad ◽  
Ali Tan Kee Zuan ◽  
Motmainna

A pot experiment was conducted to find out the effects of chemical and organic fertilizer on the yield and nutritional composition of bambara groundnut (Vigna subterranea). The size of the pot was 65.94 cm2. Different rates of compost, biofertilizer, gypsum was used along with the combination of different doses of nitrogen and phosphorus fertilizer. N and P fertilizers were found to play dominating role to increase yield and nutritional composition of the plant. Number of pod (41.75), 100-seed weight (34.25 g), protein (22.15%), Ca (803.25 mg/ka) increased with the application of N and P 30 and 60 kg/ha, respectively which was better than all other treatments. The application of N30 + P60 kg/ha increased yield and nutritional composition of bambara groundnut.


2019 ◽  
pp. 74-79
Author(s):  
S. Yu. Dorogavtsev ◽  
E. V. Sobolev ◽  
M. M. Tareeva ◽  
A. Yu. Burtsev ◽  
A. I. Gorbunov ◽  
...  

Often in the soils of crop rotations of grain crops, including on black soil, the content of mobile forms of copper, manganese, zinc and other trace elements is low. Improving the efficiency of making micronutrients for grain crops and determining the best ways and doses of their introduction are topical issues that need to be addressed in order to increase the productivity of crops. The purpose of research is to identify the effectiveness of the use of water soluble compound fertilizer with microelements of the company “Haifa Chemicals” in the technology of growing winter wheat on leached chernozem under conditions of the Oryol Region. Field production experiments were established in 2017-2018 on the basis of Orlovsky Leader LLC Branch №5” located in Livensky district. Field experience with the use of Haifa Chemicals products: Poly-Feed micronutrients 19-19-19 + 1MgO + ME and Poly-Feed 6-15-38 + 3 + ME was laid on soft winter wheat varieties Moskovskaya-56.The control variant was the basic technological scheme used in the household for carrying out leaf dressings with mineral fertilizers together with the organic fertilizer Gumostim. As a result of the research, it has been established that the use of double foliar feeding water soluble compound fertilizer with microelements Poly-Feed 19-19-19 + 1MgO + ME in the tillering stage and at the end of flowering and a single Poly-Feed 6-15-38 + 3 + IU in the subflag phase - flag leaf, increases the height of the plants, as well as the productive characteristics of the ear: the size of the ear, the number of grains in the ear, the mass of grains and their best quality, which in general provides a reliable increase in the yield of grain of winter wheat. At the same time, it was found that, due to leaf feeding, the impact of adverse weather conditions under which the development of winter wheat plants took place in 2018 and their productive properties were laid was leveled out. Due to relatively low additional costs, the use of complex fertilizers of the Poly-Feed brand for winter wheat is economically feasible and can bring additional economic income: based on the maximum level of minimum prices for the grain of the 2018 harvest, it will be 2.07-2.28 thousand rubles / ha regarding base technology. Thus, water-soluble fertilizers, which include Poly-Feed company "Haifa Chemicals" are recommended to domestic agricultural producers for mass introduction in practice of the technology of intensive sheet nutrition of grain and other crops.


1983 ◽  
Vol 101 (3) ◽  
pp. 687-690 ◽  
Author(s):  
E. P. Papanicolaou ◽  
V. D. Skarlou ◽  
C. Nobeli ◽  
N. S. Katranis

SUMMARYThe influence of various nitrogen and phosphorus sources, applied at the preseeding stage with two placement methods, on maize yield and fertilizer utilization, was studied in two field experiments and a pot experiment with a calcareous, heavy to medium heavy textured recent alluvial soil.Phosphorus alone had no effect on crop yield. Nitrogen alone or nitrogen (various forms) and phosphorus had a clear positive effect on crop yield. As to the various sources the observed differences in the crop yield of the field experiments were not significant, while in the pot experiment ammonium sulphate gave the highest yields.The data on the phosphate concentrations in the tops derived from phosphate fertilizer (Pf) indicate that the presence of nitrogen increased the utilization of phosphorus fertilizer. From the tested placement methods the incorporation method appears clearly superior in the pot experiment with a similar trend in the field experiment for all sources except ammonium phosphate-sulphate.The utilization coefficients of the nitrogen fertilizer sources suggest that ammonium and urea were better utilized than nitrates, that the higher nitrogen utilization reflected higher yields and that phosphorus fertilizer exerted a beneficial effect on nitrogen fertilizer utilization. Finally they suggest that the addition of 120 kg N/ha enhanced the amount of soil nitrogen taken up in the maize grain by 53%.


Sign in / Sign up

Export Citation Format

Share Document