Quantitative trait loci mapping for traits related to the progression of wheat flag leaf senescence

2014 ◽  
Vol 153 (7) ◽  
pp. 1234-1245 ◽  
Author(s):  
S. WANG ◽  
Z. LIANG ◽  
D. SUN ◽  
F. DONG ◽  
W. CHEN ◽  
...  

SUMMARYDelayed senescence, or stay-green, contributes to a longer grain-filling period and has been regarded as a desirable characteristic for the production of a number of crops including wheat. In the present study, in order to identify quantitative trait loci (QTLs) for traits related to the progression of wheat flag leaf senescence, green leaf area duration (GLAD) of a doubled haploid (DH) population, derived from two winter wheat varieties Hanxuan10 and Lumai14, was visually estimated under two water conditions and was recorded at 3-day intervals from 10 days after anthesis to physiological maturity using a 0–9 scale. According to GLAD, parameters related to the progression of senescence of DH lines and their parents were estimated by the Gompertz statistical model. Based on the model parameters, DH lines were categorized into three groups under drought stress and four groups under well-watered conditions. A total of 24 additive QTLs and 23 pairs of epistatic QTLs for parameters related to the progression of senescence were identified on 18 chromosomes, except for 3B, 1D and 6D. Of the QTLs detected, 14 and 10 additive QTLs were associated with the investigated traits under drought stress and well-watered conditions, respectively. Furthermore, 4, 7, 6, 2 and 2 additive QTLs for traits related to progression of senescence were clustered around the same or similar regions of chromosomes 1A, 1B, 5A, 5B and 7A, respectively. The present data provided the genetic basis for high phenotypic correlations among traits related to the progression of wheat flag leaf senescence. In addition, 17 loci were co-located or linked with previously reported QTLs regulating chlorophyll fluorescence, high-light-induced photo-oxidation, or heat stress and dark-induced senescence. The marker Xwmc336 on chromosome 1A, responsible for the onset and end times of leaf senescence, the time to maximum rate of senescence, the time to reach 75% senescence and chlorophyll content under drought stress may be helpful for marker-assisted selection breeding of wheat.

2021 ◽  
Vol 3 (2) ◽  
pp. 54
Author(s):  
Yheni Dwiningsih ◽  
Anuj Kumar ◽  
Julie Thomas ◽  
Charlez Ruiz ◽  
Jawaher Alkahtani ◽  
...  

Rice (Oryza sativa) is the staple food for more than half of the world population. Rice needs 2-3 times more water compared to other crops. Drought condition is one of the limited factor in rice production. Recombinant inbred line population derived from a cross between rice genotype tropical japonica Kaybonnet and indica ZHE733 named K/Z RIL population was used to identify candidate genes for chlorophyll content related to grain yield under drought condition. Chlorophyll content in the flag leaf of the rice plant is related to the grain yield since chlorophyll plays an important role in the photosynthesis. The K/Z RIL population was screened in the field at Fayetteville, Arkansas, USA by controlled drought stress treatment at the reproductive stage (R3), and the effect of drought stress was quantify by measuring chlorophyll content, flag leaf characteristics, and grain yield. Quantitative trait loci (QTL) analysis was performed with a set of 4133 single nucleotide polymorphism (SNP) markers by using QTL IciMapping software version 4.2.53. Candidate genes within the QTL regions were identified by using the MSU Rice Genome Annotation Project database release 7.0 as the reference. A total of eleven QTLs and forty-three candidate genes were identified for chlorophyll content related to the grain yield under drought condition. Most of the candidate genes involve in biological processes, molecular functions, and cell components. By understanding the genetic complexity of the chlorophyll content, this research provides information to develop drought-resistant rice varieties with greater productivity under drought stress condition.


Euphytica ◽  
2004 ◽  
Vol 135 (3) ◽  
pp. 255-263 ◽  
Author(s):  
V. Verma ◽  
M.J. Foulkes ◽  
A.J. Worland ◽  
R. Sylvester-Bradley ◽  
P.D.S. Caligari ◽  
...  

2003 ◽  
Vol 53 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Sohei Kobayashi ◽  
Yoshimichi Fukuta ◽  
Satoshi Morita ◽  
Tadashi Sato ◽  
Mitsuru Osaki ◽  
...  

Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 829
Author(s):  
Tally I.C. Wright ◽  
Angela C. Burnett ◽  
Howard Griffiths ◽  
Maxime Kadner ◽  
James S. Powell ◽  
...  

Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders’ single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.


Genome ◽  
2007 ◽  
Vol 50 (8) ◽  
pp. 714-723 ◽  
Author(s):  
L. Gyenis ◽  
S.J. Yun ◽  
K.P. Smith ◽  
B.J. Steffenson ◽  
E. Bossolini ◽  
...  

Hordeum vulgare subsp. spontaneum is the progenitor of cultivated barley (Hordeum vulgare L.). Domestication combined with plant breeding has led to the morphological and agronomic characteristics of modern barley cultivars. The objective of this study was to map the genetic factors that morphologically and agronomically differentiate wild barley from modern barley cultivars. To address this objective, we identified quantitative trait loci (QTLs) associated with plant height, flag leaf width, spike length, spike width, glume length in relation to seed length, awn length, fragility of ear rachis, endosperm width and groove depth, heading date, flag leaf length, number of tillers per plant, and kernel color in a Harrington/OUH602 advanced backcross (BC2F8) population. This population was genotyped with 113 simple sequence repeat markers. Thirty QTLs were identified, of which 16 were newly identified in this study. One to 4 QTLs were identified for each of the traits except glume length, for which no QTL was detected. The portion of phenotypic variation accounted for by individual QTLs ranged from about 9% to 54%. For traits with more than one QTL, the phenotypic variation explained ranged from 25% to 71%. Taken together, our results reveal the genetic architecture of morphological and agronomic traits that differentiate wild from cultivated barley.


2017 ◽  
Vol 136 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Zhen Yang ◽  
Xin Li ◽  
Ning Zhang ◽  
Xiaolei Wang ◽  
Yuna Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document