Yield, water productivity and economic return of dryland wheat in the Loess Plateau in response to conservation tillage practices

2017 ◽  
Vol 155 (8) ◽  
pp. 1272-1286
Author(s):  
Z. LI ◽  
Q. ZHANG ◽  
Q. YANG ◽  
X. YANG ◽  
J. LI ◽  
...  

SUMMARYWinter wheat (Triticum aestivum L.) production on the Loess Plateau in China has been threatened by water scarcity and climate change during the last decade. Sustainable crop production in this region requires managerial practices that can provide high yield and high water productivity (WP). A 7-year (2001–2008) study at the Loess Plateau Research Station of Lanzhou University investigated the effects of various conservation tillage practices on grain yield, soil water content (SWC), WP and economic return of winter wheat production. Tillage treatments included: conventional tillage (T), conventional tillage followed by stubble retention (TS), no-till (NT) and no-till followed by stubble retention (NTS). Over the entire experimental period, grain yield and WP of winter wheat ranged from 1279 to 4894 kg/ha and 0·32 to 2·41 kg/m3, respectively. Both were significantly affected by tillage treatment and year, while SWC was only affected by year. Grain yield and WP in TS was increased by 4·9, 12·1, 0·9% and 13·7, 20·4 and 3·9% compared with NTS, NT and T, respectively, over seven growing seasons. Additionally, a multiple linear regression analysis indicated that grain yield is mainly limited by SWC during planting. Despite its lower grain yield, the NTS treatment increased economic benefit by US$ 328, US$ 23 and US$ 87/ha compared with TS, NT and T, respectively. Therefore, it is suggested that increasing soil water storage at wheat sowing time and encouraging the use of NTS could improve economic returns in this region.

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Ahmed Laamrani ◽  
Paul R. Voroney ◽  
Aaron A. Berg ◽  
Adam W. Gillespie ◽  
Michael March ◽  
...  

The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils.


2015 ◽  
Vol 104 ◽  
pp. 59-68 ◽  
Author(s):  
Yang Yang ◽  
Chunju Zhou ◽  
Na Li ◽  
Kun Han ◽  
Yuan Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document