Statistical relativistic particle

1967 ◽  
Vol 4 (02) ◽  
pp. 389-396
Author(s):  
J. G. Gilson

This paper arises from the observation by Dirac [1] that an exact measurement of the velocity of an electron should give one of the instantaneous values ± c. The velocity v < c with which the electron moves bodily is in some statistical sense an average. This aspect of the quantum states of motion of a relativistic particle has frequently been mentioned [2], [3] and, as is wellknown, is connected with the self energy problem. Such deductions from quantum mechanics have led the author to consider the possibility of constructing from purely statistical ideas an entity having the physical properties of a relativistic elementary particle. One might reasonably hope to build up characteristics such as rest mass and spin in such a scheme. Properties such as energy and momentum will arise as averages over fluctuating random quantities. In this paper we shall concentrate on rest mass, energy and momentum. We shall show that a zero rest mass object which is regarded as being imbedded in a statistical structure emulates the characteristic of rest mass. The average energy and momentum of this statistical system are then shown to satisfy the usual classical relativistic relation between energy and momentum. The statistical structure chosen is that of an object with a randomly orientated velocity vector, c, which has a fixed magnitude c … |c| where c is the velocity of light.

1967 ◽  
Vol 4 (2) ◽  
pp. 389-396 ◽  
Author(s):  
J. G. Gilson

This paper arises from the observation by Dirac [1] that an exact measurement of the velocity of an electron should give one of the instantaneous values ± c. The velocity v < c with which the electron moves bodily is in some statistical sense an average. This aspect of the quantum states of motion of a relativistic particle has frequently been mentioned [2], [3] and, as is wellknown, is connected with the self energy problem. Such deductions from quantum mechanics have led the author to consider the possibility of constructing from purely statistical ideas an entity having the physical properties of a relativistic elementary particle. One might reasonably hope to build up characteristics such as rest mass and spin in such a scheme. Properties such as energy and momentum will arise as averages over fluctuating random quantities. In this paper we shall concentrate on rest mass, energy and momentum. We shall show that a zero rest mass object which is regarded as being imbedded in a statistical structure emulates the characteristic of rest mass. The average energy and momentum of this statistical system are then shown to satisfy the usual classical relativistic relation between energy and momentum. The statistical structure chosen is that of an object with a randomly orientated velocity vector, c, which has a fixed magnitude c … |c| where c is the velocity of light.


2017 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Eyal Brodet

In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum of a particle. In the current framework, the particle's energy and momentum are computed using the particle's rest mass, M and rest mass time, t_m=h/M c^2  where t_m has the same time unit as conventionally used for the light velocity c. Therefore it is currently assumed that this definition of time describes the total kinetic and mass energy of a particle as given by special relativity. In this paper we will reexamine the above assumption and suggest describing the particle's energy as a function of its own particular decay time and not with respect to its rest mass time unit. Moreover we will argue that this rest mass time unit currently used is in fact the minimum time unit defined for a particle and that the particle may have more energy stored with in it. Experimental ways to search for this extra energy stored in particles such as electrons and photons are presented.


2019 ◽  
Vol 196 ◽  
pp. 00005 ◽  
Author(s):  
Eduard V. Usov ◽  
Pavel D. Lobanov ◽  
Ilya A. Klimonov ◽  
Alexander E. Kutlimetov ◽  
Anton A. Butov ◽  
...  

The paper contains the results of numerical simulation of stainless steel melt motions on the surface of uranium dioxide. The investigations are performed for purposes of understanding of the fuel rod behavior during the core disruptive accident in the fast reactors. The systems of mass, energy and momentum conservation equations are solved to simulate melt motion on the surface of the fuel pin. Heat transfer and friction between melt and pin's surface and melt and coolant flow are taken into consideration. The dependences of mass of the melt and the features of the melt motion on coolant velocity and contact angle between melt and surface of the fuel rod are presented.


1986 ◽  
Vol 41 (8) ◽  
pp. 1005-1008
Author(s):  
F. Winterberg

The prerequisite for an efficient electron-positron gamma ray laser, which is the rapid formation o f a dense electron-positron plasma in a time shorter than the time for pair annihilation, is ideally fulfilled in a relativistic electron-positron superpinch. Because the cross section for annihilation decreases quadratically with the center o f mass energy, the time requirements otherwise imposed, are greatly relaxed. A relativistic electron-positron pinch can collapse under a complete population inversion into a very dense state possessing the form o f a long filament, just as it is required for a gamma ray laser. The gamma ray energies are the total center of mass energies, which can be much larger than the electron-positron rest mass energies.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2192 ◽  
Author(s):  
Chen Yang ◽  
Kangjie Deng ◽  
Hangxing He ◽  
Haochuang Wu ◽  
Kai Yao ◽  
...  

The research on the control strategy and dynamic characteristics of the Molten Carbonate Fuel Cell-Micro Gas Turbine (MCFC-MGT) hybrid power system has received much attention. The use of the Hardware-In-the-Loop Simulation (HILS) method to study the MCFC-MGT hybrid power system, where the MCFC is the model subsystem and the MGT is the physical subsystem, is an effective means to save development cost and time. The difficulty with developing the MCFC-MGT HILS system is the transfer of the mass, energy, and momentum between the physical subsystem and the model subsystem. Hence, a new Simulation–Stimulation (Sim–Stim) interface model of the MCFC-MGT HILS hybrid power system to achieve a consistent mass, energy, and momentum with the prototype system of the MCFC-MGT hybrid power system is proposed. In order to validate the Sim–Stim interface model before application in an actual system, both a real-time model of the MCFC-MGT hybrid power system and the MCFC-MGT HILS hybrid power system based on the Sim–Stim interface model were developed in the Advanced PROcess Simulation (APROS) platform. The step-up and step-down of the current density, which were strict for the Sim–Stim interface model, were studied in these two models. The results demonstrated that the Sim–Stim interface model developed for the MCFC-MGT HILS hybrid power system is rapid and reasonable.


Author(s):  
Sugato Hajra ◽  
Abhishek Aditya Patra

In the days of modernization, industrialization, technological world we find out a new method of steam production with help of coal. This state of act systems are manufactured over a range of 500 TPH.This boilers are highly efficient, multi coal firing capacity, less emission of so2 and nox gases, utilize high ignite cokes, petcoats,washery rejects. This survey paper is intended to comprehensively give an account of domain knowledge related to CFBC boiler. The authors touch upon the design changes which are introduced in the component levels in order to ease the operation, enhance the performance and to meet the regulatory compliance. In addition, salient correlations related to hydrodynamics, heat transfer and combustion are narrated to facilitate the control and system engineers to develop mathematical models using conservation of mass, energy and momentum equations.


1985 ◽  
Vol 51 ◽  
Author(s):  
H. Vach ◽  
J. Häger ◽  
B. Simon ◽  
C. Flytzanis ◽  
H. Walther

ABSTRACTMolecular beam scattering from solid surfaces has long been recognized as a powerful means for investigation of gas-surface reaction dynamics. With the help of the recently developed laser-induced fluorescence and ionization techniques for state-selective detection, one can now measure the angular and velocity distributions of the scattered molecules together with their internal energy distributions. Such measurements fully describe the average energy and momentum exchanges between molecules and surfaces and give thus full information on the dynamics of the interaction. Recently, also the scattering of vibrationally excited NO molecules was investigated. The paper gives a review of new experiments with emphasis on the investigation of the scattering of NO molecules from a pyrographite surface. A simple model using transport properties of the solid is presented which accounts surprisingly well for the observed features.


2000 ◽  
Vol 15 (19) ◽  
pp. 2979-2986 ◽  
Author(s):  
S. S. XULU

In this paper we obtain the energy distribution associated with the Ernst space–time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.


Sign in / Sign up

Export Citation Format

Share Document