Structure of the casein micelle. A proposed model

1970 ◽  
Vol 37 (3) ◽  
pp. 493-505 ◽  
Author(s):  
J. Garnier ◽  
B. Ribadeau Dumas

SummaryOn the basis of complete permeability by high molecular weight reagents of casein micelles in milk and a uniform distribution of the 3 different casein subunits, a model of the micelle structure is proposed. It is composed of an average repeating unit of 1 κ-, 2 αs1;- and β-casein subunits assembled in a 3-dimensional network or branched polymer made of 130–130000 monomers, in which the trimers of κ-casein occupy the nodes and the copolymers of αs1;- and β-caseins make up the branches. All the associations between subunits are through non-covalent bonds. The chemical composition varies with the number of αs1;- and β;-casein subunits in the branches. This proposed structure is strongly supported by evidence from electron microscopy and a scale model has been made. It leads to an understanding of the role of κ-casein in micelle formation and opens new perspectives in explaining some properties of the caseins. It offers an interesting example of a new type of quaternary structure of protein subunits.

Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

It has been shown for some time that it is possible to obtain images of small unstained proteins, with a resolution of approximately 5Å using dark field electron microscopy (1,2). Applying this technique, we have observed a uniformity in size and shape of the 2-dimensional images of pure specimens of fish protamines (salmon, herring (clupeine, Y-l) and rainbow trout (Salmo irideus)). On the basis of these images, a model for the 3-dimensional structure of the fish protamines has been proposed (2).The known amino acid sequences of fish protamines show stretches of positively charged arginines, separated by regions of neutral amino acids (3). The proposed model for protamine structure (2) consists of an irregular, right-handed helix with the segments of adjacent arginines forming the loops of the coil.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3243
Author(s):  
Shaojian Song ◽  
Peichen Guan ◽  
Bin Liu ◽  
Yimin Lu ◽  
HuiHwang Goh

Impedance-based stability analysis is an effective method for addressing a new type of SSO accidents that have occurred in recent years, especially those caused by the control interaction between a DFIG and the power grid. However, the existing impedance modeling of DFIGs is mostly focused on a single converter, such as the GSC or RSC, and the influence between the RSC and GSC, as well as the frequency coupling effect inside the converter are usually overlooked, reducing the accuracy of DFIG stability analysis. Hence, the entire impedance is proposed in this paper for the DFIG-based WECS, taking coupling factors into account (e.g., DC bus voltage dynamics, asymmetric current regulation in the dq frame, and PLL). Numerical calculations and HIL simulations on RT-Lab were used to validate the proposed model. The results indicate that the entire impedance model with frequency coupling is more accurate, and it is capable of accurately predicting the system’s possible resonance points.


1989 ◽  
Vol 56 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Charles W. Slattery ◽  
Satish M. Sood ◽  
Pat Chang

SummaryThe association of non-phosphorylated (0-P) and fully phosphorylated (5-P) human β-caseins was studied by fluorescence spectroscopy and laser light scattering. The tryptophan fluorescence intensity (FI) level increased between 20 and 35 °C, indicating a change in the environment of that residue. A similar transition occurred when ANS was used as a probe. Transition temperatures were slightly lower in 10 mM-CaCl2 but were not affected by an equivalent increase in ionic strength caused by NaCl. The magnitude of the FI change was less for the 5-P than the 0-P protein but was increased for both by CaCl2 addition. These FI data were characteristic of a conformational change and this was supported by fluorescence polarization which indicated that with CaCl2, tryptophan and ANS mobility increased at the transition temperature even though the extent of protein association also increased. Light scattering suggested that protein association proeeeded with the primary formation of submicellar aggregates containing 20–30 monomers which then associated further to form particles of minimum micelle size (12–15 submicelles), and eventually larger. The temperature of precipitation of the 5-P form in the presence of CaCl2 was lower than the conformational transition and suggested that both hydrophobic interactions and Ca bridges between phosphate esters on adjacent molecules are important in micelle formation.


2020 ◽  
Vol 20 (6) ◽  
pp. 942-957
Author(s):  
Yusuf Izmirlioglu ◽  
Esra Erdem

AbstractWe propose a novel formal framework (called 3D-NCDC-ASP) to represent and reason about cardinal directions between extended objects in 3-dimensional (3D) space, using Answer Set Programming (ASP). 3D-NCDC-ASP extends Cardinal Directional Calculus (CDC) with a new type of default constraints, and NCDC-ASP to 3D. 3D-NCDC-ASP provides a flexible platform offering different types of reasoning: Nonmonotonic reasoning with defaults, checking consistency of a set of constraints on 3D cardinal directions between objects, explaining inconsistencies, and inferring missing CDC relations. We prove the soundness of 3D-NCDC-ASP, and illustrate its usefulness with applications.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Ali Çakmak

The authors wish to make the following corrections to their paper [...]


2017 ◽  
Vol 74 ◽  
pp. 1-11 ◽  
Author(s):  
Thom Huppertz ◽  
Inge Gazi ◽  
Hannemieke Luyten ◽  
Hans Nieuwenhuijse ◽  
Arno Alting ◽  
...  

2006 ◽  
Vol 61 (7) ◽  
pp. 792-798 ◽  
Author(s):  
Klaus Müller-Buschbaum

The reaction of a melt of unsubstituted imidazole with praseodymium metal yields bright green crystals of 3D-[Pr(Im)3(ImH)]@ImH. Imidazolate ligands coordinate η1 via both N atoms their 1,3 positioning within the heterocycle being responsible for the connection of praseodymium atoms. A 3-dimensional network is formed with imidazole molecules from the melt intercalated in the crystal structure. The imidazole molecules can be released and temperature dependent reversibly be exchanged with gas molecules including argon. Thus the solvent free high temperature synthesis of rare earth elements with amine melts can also be utilized for “crystal engineering” and the synthesis of compounds with material science aspects. Furthermore 3D-[Pr(Im)3(ImH)]@ImH is the first unsubstituted imidazolate of the lanthanides.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Ulin Nuha A. Qohar ◽  
Antonella Zanna Munthe-Kaas ◽  
Jan Martin Nordbotten ◽  
Erik Andreas Hanson

In the last decade, numerical models have become an increasingly important tool in biological and medical science. Numerical simulations contribute to a deeper understanding of physiology and are a powerful tool for better diagnostics and treatment. In this paper, a nonlinear multi-scale model framework is developed for blood flow distribution in the full vascular system of an organ. We couple a quasi one-dimensional vascular graph model to represent blood flow in larger vessels and a porous media model to describe flow in smaller vessels and capillary bed. The vascular model is based on Poiseuille’s Law, with pressure correction by elasticity and pressure drop estimation at vessels' junctions. The porous capillary bed is modelled as a two-compartment domain (artery and venous) using Darcy’s Law. The fluid exchange between the artery and venous capillary bed compartments is defined as blood perfusion. The numerical experiments show that the proposed model for blood circulation: (i) is closely dependent on the structure and parameters of both the larger vessels and of the capillary bed, and (ii) provides a realistic blood circulation in the organ. The advantage of the proposed model is that it is complex enough to reliably capture the main underlying physiological function, yet highly flexible as it offers the possibility of incorporating various local effects. Furthermore, the numerical implementation of the model is straightforward and allows for simulations on a regular desktop computer.


2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


Sign in / Sign up

Export Citation Format

Share Document