Evaluating the technological properties of lactic acid bacteria in Wagyu cattle milk

2021 ◽  
pp. 1-7
Author(s):  
Harutoshi Tsuda ◽  
Kana Kodama

Abstract This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.

2013 ◽  
Vol 3 (2) ◽  
pp. 92-96
Author(s):  
Nadim Chishty ◽  
Srinivasan R ◽  
Dinesh K. Kumawat ◽  
Yogesh Franklin ◽  
Anil Tripathi

Lactic acid bacteria (LAB) are a group of gram positive, non spore forming, cocci or rod shaped, catalase negative and fastidious organisms. They are considered as “GRAS” (Generally Recognized As Safe) organisms. A total of 86 bacterial isolates were isolated from different samples of raw milk, buttermilk and curd by using MRS agar and M17 agar. Lactic Acid Bacteria have similar nutritional and growth requirements, it becomes difficult and laborious to identify them by classical methods. Hence, molecular typing was attempted to find the diversity, 16S rDNA gene amplification was done using specific 16S rDNA primers and amplified gene products were digested with different restriction endonuclease enzymes. Further the 16S rDNA sequencing was carried out and the sequences were compared with the available gene sequences in NCBI website by using BLASTn. All isolates obtained from dairy products were accurately identified as Lc. lactis, Lb. plantarum, Leu. mesenteroides, E. durans, Lb. fermentum, Lc. garviae and Lb. casei. The predominant LAB were Lactobacillus casei and Leu. mesenteroides, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Rajasthan have complex compositions of LAB species.


2013 ◽  
Vol 237 (4) ◽  
pp. 609-615 ◽  
Author(s):  
Silvia-Simona Grosu-Tudor ◽  
Medana Zamfir ◽  
Roel Van der Meulen ◽  
Luc De Vuyst

Author(s):  
Sarang Dilip Pophaly ◽  
Manorama Chauhan ◽  
Vaibhao Lule ◽  
Poonam Sarang ◽  
Jitesh Tarak ◽  
...  

Fermented dairy products are known for their high nutritional and therapeutic value and are also having excellent sensory characteristics, which make them popular throughout the world. Most of the characteristics of fermented products can be attributed to the activity of their starter culture. The starter microorganisms, in the course of their metabolism, elaborate various compounds and enzymes, which impart desirable properties to the product. Lactic acid bacteria (LAB) are the most common starter bacterial group used extensively in fermentation of dairy products. Lactic acid bacteria synthesize different compounds belonging to classes of organic acids, gases, bacteriocins, flavoring agents, biothickners, nutrients, etc. Molecules within each class vary for each species and even within strains. The functionalities from such novel starter cultures include improved nutritional value, sensory characteristics, and therapeutic benefits. These starter cultures are thus important for development of functional fermented and probiotic products. This chapter explores functional starter cultures for fermented dairy products.


2021 ◽  
Vol 26 (2) ◽  
pp. 2548-2559
Author(s):  
VIORICA CORBU ◽  
◽  
STEFANA PETRUT ◽  
TATIANA VASSU ◽  
DIANA PELINESCU ◽  
...  

During last decades, there is a growing interest for characterizing new microbial strains isolated from various sources (plants, soil and natural fermentative processes), in order to enhance industrial productivity. The aim of the present study was to assess the profile of cell growth parameters and biomass accumulation of 15 newly isolated yeast and lactic acid bacteria (LAB) strains from Romanian spontaneous fermented dairy products under different environmental stress conditions (chemical and physical). On this purpose, the yeast and LAB strains were characterized and identified using MALDI-TOF MS and selected for their biotechnological potential. Cell growth was evaluated in presence of extreme pH values, temperatures and different NaCl concentrations. All strains included in this study grew well under their optimal conditions; some of them preferred extreme parameters: acid / very alkaline pH, high temperatures or NaCl concentration The characterization of microbiota from Romanian spontaneous fermented dairy products might represent a great opportunity for the development of dairy industry using native microorganisms, preserving thus the Romanian biodiversity and cultural heritage.


2008 ◽  
Vol 58 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Olfa Ben Moussa ◽  
Melika Mankaï ◽  
Khaola Setti ◽  
Mouna Boulares ◽  
Medini Maher ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 480 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Viviana B. Suárez ◽  
Andrea Quiberoni ◽  
Silvina A. Pujato

This article provides information on the characteristics of diverse phages of lactic acid bacteria and highlights the incidence of their presence in different dairy fermentations. As it is known, thermal treatments on raw milk and use of sanitizers in the disinfection of surfaces and equipment are strategies usually applied in dairy to prevent bacteriophage infections. In this sense, this review mainly focuses on the existing data about the resistance against thermal treatments and sanitizers usually used in the dairy industry worldwide, and the differences found among bacteriophages of diverse genera are remarked upon. Also, we provide information concerning the problems that have arisen as a consequence of the potential presence of bacteriophages in cheese whey powder and derivatives when they are added in fermented dairy product manufacturing. Finally, some important conclusions on each topic are marked and checkpoints to be considered are suggested.


2001 ◽  
Vol 64 (4) ◽  
pp. 559-563 ◽  
Author(s):  
ROXANA MEDINA ◽  
MARTA KATZ ◽  
SILVIA GONZALEZ ◽  
GUILLERMO OLIVER

Indigenous lactic acid bacteria in ewe's milk and artisanal cheese were studied in four samples of fresh raw milk and four 1-month-old cheeses from the provinces of northwest Argentina. Mean growth counts on M17, MRS, and MSE agar media did not show significant differences (P < 0.05) in raw milk and cheeses. Isolates of lactic acid bacteria from milk were identified as Enterococcus (48%), lactococci (14%), leuconostocs (8%), and lactobacilli (30%). All lactococci were identified as Lactococcus lactis (subsp. lactis and subsp. cremoris). Lactobacilli were identified as Lactobacillus plantarum (92%) and Lactobacillus acidophilus (8%). Enterococci (59%) and lactobacilli (41%) were isolated from cheeses. L. plantarum (93%), L. acidophilus (5%), and Lactobacillus casei (2%) were most frequently isolated. L. lactis subsp. lactis biovar diacetylactis strains were considered as fast acid producers. L. lactis subsp. cremoris strains were slow acid producers. L. plantarum and L. casei strains identified from the cheeses showed slow acid production. The majority of the lactobacilli and Lactococcus lactis strains utilized citrate and produced diacetyl and acetoin in milk. Enzyme activities (API-ZYM tests) of lactococci were low, but activities of L. plantarum strains were considerably higher. The predominance of L. plantarum in artisanal cheese is probably important in the ripening of these cheeses due to their physiological and biochemical characteristics.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Giusi Macaluso ◽  
Gerlando Fiorenza ◽  
Raimondo Gaglio ◽  
Isabella Mancuso ◽  
Maria Luisa Scatassa

Bacteriocins are antimicrobial proteins produced by bacteria that inhibit with a bactericidal or bacteriostatic mode of action, the growth of other bacteria. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Bacteriocinogenic LAB are generally recognized as safe (GRAS) and useful to control the frequent development of pathogens and spoilage microorganisms; for this reason they are commonly used as starter cultures in food fermentations. In this study, the authors describe the results of a screening on 699 LAB isolated from wooden vat surfaces, raw milk and traditional Sicilian cheeses, for the production of bacteriocin-like inhibitory substances (BLIS), by comparing two alternative methods. The antagonistic activity of LAB and its proteinaceous nature were evaluated using the <em>spot on the lawn</em> and the <em>well-diffusion assay</em> and the sensitivity to proteolytic (proteinase K, protease B and trypsin), amylolytic (α-amylase) and lipolytic (lipase) enzymes. The indicator strains used were: <em>Listeria monocytogenes</em>, <em>Staphylococcus aureus</em>, <em>E. coli</em>, <em>Salmonella enteritidis</em>. A total of 223 strains (belonged to the species <em>Enterococcus</em> spp., <em>Lactobacillus</em> spp., <em>Pediococcus</em> spp., <em>Streptococcus</em> spp., <em>Leuconostoc</em> spp. and <em>Lactococcus lactis</em>) were found to inhibit the growth of <em>Listeria monocytogenes</em> by using the <em>spot on the lawn</em> method; only 37 of these were confirmed by using the well-diffusion assay. The direct addition of bacteriocin-producing cultures into dairy products can be a more practical and economic option for the improvement of the safety and quality of the final product.


Sign in / Sign up

Export Citation Format

Share Document