Intracellular Staphylococcus aureus inhibits autophagy of bovine mammary epithelial cells through activating p38α

2021 ◽  
Vol 88 (3) ◽  
pp. 293-301
Author(s):  
Run Wang ◽  
Wen Zhang ◽  
Lumei Wang ◽  
Na Geng ◽  
Xiaozhou Wang ◽  
...  

AbstractStaphylococcus aureus is a common pathogen of bovine mastitis which can induce autophagy and inhibit autophagy flux, resulting in intracellular survival and persistent infection. The aim of the current study was to investigate the role of p38α in the autophagy induced by intracellular S. aureus in bovine mammary epithelial cells. An intracellular infection model of MAC-T cells was constructed, and activation of p38α was examined after S. aureus invasion. Through activating/inhibiting p38α by anisomycin/SB203580, the autophagosomes, LC3 and p62 level were analyzed by immunofluorescence and western blot. To further study the detailed mechanism of p38α, phosphorylation of ULK1ser757 was also detected. The results showed that intracellular S. aureus activated p38α, and the activation developed in a time-dependent manner. Inhibition of p38α promoted intracellular S. aureus-induced autophagy flow, up-regulated the ratio of LC3 II/I, reduced the level of p62 and inhibited the phosphorylation of ULK1ser757, whereas the above results were reversed after activation of p38α. The current study indicated that intracellular S. aureus can inhibit autophagy flow by activating p38α in bovine mammary epithelial cells.

2017 ◽  
Vol 100 (8) ◽  
pp. 6414-6421 ◽  
Author(s):  
Ivana G. Castilho ◽  
Stéfani Thais Alves Dantas ◽  
Hélio Langoni ◽  
João P. Araújo ◽  
Ary Fernandes ◽  
...  

2012 ◽  
Vol 79 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Damien S. Bouchard ◽  
Lucie Rault ◽  
Nadia Berkova ◽  
Yves Le Loir ◽  
Sergine Even

ABSTRACTStaphylococcus aureusis a major pathogen that is responsible for mastitis in dairy herds.S. aureusmastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability ofS. aureusto invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability ofLactobacillus caseistrains to prevent invasion of bMEC by twoS. aureusbovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively.L. caseistrains affected adhesion and/or internalization ofS. aureusin a strain-dependent manner. Interestingly,L. caseiCIRM-BIA 667 reducedS. aureusNewbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two otherL. caseistrains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate ofS. aureuswas not affected byL. casei. It should be noted thatL. caseiwas internalized at a low rate but survived in bMEC cells with a better efficiency than that ofS. aureusRF122. Inhibition ofS. aureusadhesion was maintained with heat-killedL. casei, whereas contact between liveL. caseiandS. aureusor bMEC was required to preventS. aureusinternalization. This first study of the antagonism of LAB towardS. aureusin a mammary context opens avenues for the development of novel control strategies against this major pathogen.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Lili Zhang ◽  
Lichang Sun ◽  
Ruicheng Wei ◽  
Qiang Gao ◽  
Tao He ◽  
...  

ABSTRACT Bacteriophages (phages) are known to effectively kill extracellular multiplying bacteria. The present study demonstrated that phages penetrated bovine mammary epithelial cells and cleared intracellular Staphylococcus aureus in a time-dependent manner. In particular, phage vB_SauM_JS25 reached the nucleus within 3 h postincubation. The phages had an endocytotic efficiency of 12%. This ability to kill intracellular host bacteria suggests the utility of phage-based therapies and may protect patients from recurrent infection and treatment failure.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zhuo-Ma Luoreng ◽  
Da-Wei Wei ◽  
Xing-Ping Wang

AbstractMastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3′ untranslated region (3′ UTR) of the NKIRAS2, but not the 3′UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.


2020 ◽  
Vol 7 ◽  
Author(s):  
Marisol Báez-Magaña ◽  
Nayeli Alva-Murillo ◽  
Ivan Medina-Estrada ◽  
María Teresa Arceo-Martínez ◽  
Joel E. López-Meza ◽  
...  

2020 ◽  
Vol 103 (4) ◽  
pp. 3493-3504
Author(s):  
Jia Cheng ◽  
Jv Zhang ◽  
Bo Han ◽  
Herman W. Barkema ◽  
Eduardo R. Cobo ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingjiang Liu ◽  
Guoqing Fang ◽  
Shaojie Yin ◽  
Xin Zhao ◽  
Chi Zhang ◽  
...  

In our previous study, lipopolysaccharide (LPS) significantly reduced the cell viability of primary bovine mammary epithelial cells (bMEC) leading to cell apoptosis, which were prevented by caffeic acid (CA) through inhibiting NF-κB activation and reducing proinflammatory cytokine expression. While the underlying mechanism remains unclear, here, we determined that LPS induced the extensive microstructural damage of bMEC, especially the mitochondria and endoplasmic reticulum. Then, the obvious reduction of mitochondrial membrane potential and expression changes of apoptosis-associated proteins (Bcl-2, Bax, and casepase-3) indicated that apoptosis signaling through the mitochondria should be responsible for the cell viability decrease. Next, the high-throughput cDNA sequencing (RNA-Seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were employed to verify that the MAPK and JAK-STAT signaling pathways also were the principal targets of LPS. Following, the critical proteins (ERK, JNK, p38, and c-jun) of the MAPK signaling pathways were activated, and the release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) regulated by NF-κB and MAPKs was significantly increased, which can promote a cascade of inflammation that induces cell injury and apoptosis. Meanwhile, CA significantly inhibited the activation of MAPKs and the release of proinflammatory cytokines in a dose-dependent manner, which were similar to its effects on the NF-κB activation that we previously published. So we concluded that CA regulates the proteins located in the upstream of multiple cell signal pathways which can reduce the LPS-induced activation of NF-κB and MAPKs, thus weakening the inflammatory response and maintaining cell structure and function, which accordingly inhibit apoptosis.


Sign in / Sign up

Export Citation Format

Share Document