The rate of spreading in spin coating

2000 ◽  
Vol 413 ◽  
pp. 65-88 ◽  
Author(s):  
S. K. WILSON ◽  
R. HUNT ◽  
B. R. DUFFY

In this paper we reconsider the fundamental problem of the centrifugally driven spreading of a thin drop of Newtonian fluid on a uniform solid substrate rotating with constant angular speed when surface-tension and moving-contact-line effects are significant. We discuss analytical solutions to a number of problems in the case of no surface tension and in the asymptotic limit of weak surface tension, as well as numerical solutions in the case of weak but finite surface tension, and compare their predictions for the evolution of the radius of the drop (prior to the onset of instability) with the experimental results of Fraysse & Homsy (1994) and Spaid & Homsy (1997). In particular, we provide a detailed analytical description of the no-surface-tension and weak-surface-tension asymptotic solutions. We demonstrate that, while the asymptotic solutions do indeed capture many of the qualitative features of the experimental results, quantitative agreement for the evolution of the radius of the drop prior to the onset of instability is possible only when weak but finite surface-tension effects are included. Furthermore, we also show that both a fixed- and a specific variable-contact-angle condition (or ‘Tanner law’) are capable of reproducing the experimental results well.

1990 ◽  
Vol 211 ◽  
pp. 373-392 ◽  
Author(s):  
L. M. Hocking

Experiments by Huppert (1982) have demonstrated that a finite volume of fluid placed on an inclined plane will elongate into a thin sheet of fluid as it slides down the plane. If the fluid is initially placed uniformly across the plane, the sheet retains its two-dimensionality for some time, but when it has become sufficiently long and thin, the leading edge develops a spanwise instability. A similarity solution for this motion was derived by Huppert, without taking account of the edge regions where surface tension is important. When these regions are examined, it is found that the conditions at the edges can be satisfied, but only when the singularity associated with the moving contact line is removed. When the sheet is sufficiently elongated, the profile of the free surface shows an upward bulge near the leading edge. It is suggested that the observed instability of the shape of the leading edge is a result of the dynamics of the fluid in this bulge. The related problem of a ridge of fluid sliding down the plane is examined and found to be linearly unstable. The spanwise lengthscale of this instability is, however, dependent on the width of the channel occupied by the fluid, which is at variance with the observed nature of the instability. Preliminary numerical solutions for the nonlinear development of a small disturbance to the position of a straight leading edge show the incipient development of a finger of fluid with a width that does not depend on the channel size, in accordance with the observations.


1998 ◽  
Vol 359 ◽  
pp. 313-328 ◽  
Author(s):  
YULII D. SHIKHMURZAEV

An asymptotic analysis of two-dimensional free-surface cusps associated with flows at low Reynolds numbers is presented on the basis of a model which, in agreement with direct experimental observations, considers this phenomenon as a particular case of an interface formation–disappearance process. The model was derived from first principles and earlier applied to another similar process: the moving contact-line problem. As is shown, the capillary force acting on a cusp from the free surface, which in the classical approach can be balanced by viscous stresses only if the associated rate of dissipation of energy is infinite, in the present theory is always balanced by the force from the surface-tension-relaxation ‘tail’, which stretches from the cusp towards the interior of the fluid. The flow field near the cusp is shown to be regular, and the surface-tension gradient in the vicinity of the cusp, caused and maintained by the external flow, induces and is balanced by the shear stress. Existing approaches to the free-surface cusp description and some relevant experimental aspects of the problem are discussed.


2015 ◽  
Vol 772 ◽  
pp. 107-126 ◽  
Author(s):  
Weiqing Ren ◽  
Philippe H. Trinh ◽  
Weinan E

When a droplet spreads on a solid substrate, it is unclear what the correct boundary conditions are to impose at the moving contact line. The classical no-slip condition is generally acknowledged to lead to a non-integrable singularity at the moving contact line, which a slip condition, associated with a small slip parameter, ${\it\lambda}$, serves to alleviate. In this paper, we discuss what occurs as the slip parameter, ${\it\lambda}$, tends to zero. In particular, we explain how the zero-slip limit should be discussed in consideration of two distinguished limits: one where time is held constant, $t=O(1)$, and one where time tends to infinity at the rate $t=O(|\!\log {\it\lambda}|)$. The crucial result is that in the case where time is held constant, the ${\it\lambda}\rightarrow 0$ limit converges to the slip-free equation, and contact line slippage occurs as a regular perturbative effect. However, if ${\it\lambda}\rightarrow 0$ and $t\rightarrow \infty$, then contact line slippage is a leading-order singular effect.


Author(s):  
P. F. Rhodes-Robinson

AbstractIn this note we examine the influence of surface tension on surface waves incident against a fixed vertical plane wall. The motion is time harmonic and is determined by making the initial assumption that the free-surface slope at the wall is prescribed. From the unique solution obtained for the velocity potential, the parameter involved in this specification can be determined, for small laboratory-scale waves at least, using some longstanding experimental results on meniscus behaviour at a moving contact line. The effect of surface tension is to produce a motion wherein reflexion from the wall is not complete and there is a local disturbance, in contrast to the classical standing-wave motion in the absence of surface tension.


1997 ◽  
Vol 334 ◽  
pp. 211-249 ◽  
Author(s):  
YULII D. SHIKHMURZAEV

A general mathematical model which describes the motion of an interface between immiscible viscous fluids along a smooth homogeneous solid surface is examined in the case of small capillary and Reynolds numbers. The model stems from a conclusion that the Young equation, σ1 cos θ = σ2 − σ3, which expresses the balance of tangential projection of the forces acting on the three-phase contact line in terms of the surface tensions σi and the contact angle θ, together with the well-established experimental fact that the dynamic contact angle deviates from the static one, imply that the surface tensions of contacting interfaces in the immediate vicinity of the contact line deviate from their equilibrium values when the contact line is moving. The same conclusion also follows from the experimentally observed kinematics of the flow, which indicates that liquid particles belonging to interfaces traverse the three-phase interaction zone (i.e. the ‘contact line’) in a finite time and become elements of another interface – hence their surface properties have to relax to new equilibrium values giving rise to the surface tension gradients in the neighbourhood of the moving contact line. The kinematic picture of the flow also suggests that the contact-line motion is only a particular case of a more general phenomenon – the process of interface formation or disappearance – and the corresponding mathematical model should be derived from first principles for this general process and then applied to wetting as well as to other relevant flows. In the present paper, the simplest theory which uses this approach is formulated and applied to the moving contact-line problem. The model describes the true kinematics of the flow so that it allows for the ‘splitting’ of the free surface at the contact line, the appearance of the surface tension gradients near the contact line and their influence upon the contact angle and the flow field. An analytical expression for the dependence of the dynamic contact angle on the contact-line speed and parameters characterizing properties of contacting media is derived and examined. The role of a ‘thin’ microscopic residual film formed by adsorbed molecules of the receding fluid is considered. The flow field in the vicinity of the contact line is analysed. The results are compared with experimental data obtained for different fluid/liquid/solid systems.


2009 ◽  
Vol 633 ◽  
pp. 327-353 ◽  
Author(s):  
MARK A. KELMANSON

The effects are investigated of including inertial terms, in both small- and large-surface-tension limits, in a remodelling of the influential and fundamental problem first formulated by Moffatt and Pukhnachov in 1977: that of viscous thin-film free-surface Stokes flow exterior to a circular cylinder rotating about its horizontal axis in a vertical gravitational field.An analysis of the non-dimensionalizations of previous related literature is made and the precise manner in which different rescalings lead to the asymptotic promotion or demotion of pure-inertial flux terms over gravitational-inertial terms is highlighted. An asymptotic mass-conserving evolution equation for a perturbed-film thickness is derived and solved using two-timescale asymptotics with a strained fast timescale. By using an algebraic manipulator to automate the asymptotics to high orders in the small expansion parameter of the ratio of the film thickness to the cylinder radius, consistent a posteriori truncations are obtained.Via two-timescale and numerical solutions of the evolution equation, new light is shed on diverse effects of inertia in both small- and large-surface-tension limits, in each of which a critical Reynolds number is discovered above which the thin-film evolution equation has no steady-state solution due to the strength of the destabilizing inertial centrifugal force. Extensions of the theory to the treatment of thicker films are discussed.


Author(s):  
Shaofan Li ◽  
Houfu Fan

In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.


2014 ◽  
Vol 746 ◽  
Author(s):  
E. Kirkinis ◽  
S. H. Davis

AbstractA recent hydrodynamic theory of liquid slippage on a solid substrate (Kirkinis & Davis, Phys. Rev. Lett., vol. 110, 2013, 234503) gives rise to a sequence of eddies (Moffatt vortices) that co-move with a moving contact line (CL) in a liquid wedge. The presence of these vortices is established through secular equations that depend on the dynamic contact angle $\alpha $ and capillary number Ca. The limiting case $\alpha \rightarrow 0$ is associated with the appearance of such vortices in a channel. The vortices are generated by the relative motion of the interfaces, which in turn is due to the motion of the CL. This effect has yet to be observed in experiment.


2020 ◽  
Vol 229 (10) ◽  
pp. 1897-1921 ◽  
Author(s):  
Uǧis Lācis ◽  
Petter Johansson ◽  
Tomas Fullana ◽  
Berk Hess ◽  
Gustav Amberg ◽  
...  

Abstract The movement of the triple contact line plays a crucial role in many applications such as ink-jet printing, liquid coating and drainage (imbibition) in porous media. To design accurate computational tools for these applications, predictive models of the moving contact line are needed. However, the basic mechanisms responsible for movement of the triple contact line are not well understood but still debated. We investigate the movement of the contact line between water, vapour and a silica-like solid surface under steady conditions in low capillary number regime. We use molecular dynamics (MD) with an atomistic water model to simulate a nanoscopic drop between two moving plates. We include hydrogen bonding between the water molecules and the solid substrate, which leads to a sub-molecular slip length. We benchmark two continuum methods, the Cahn–Hilliard phase-field (PF) model and a volume-of-fluid (VOF) model, against MD results. We show that both continuum models reproduce the statistical measures obtained from MD reasonably well, with a trade-off in accuracy. We demonstrate the importance of the phase-field mobility parameter and the local slip length in accurately modelling the moving contact line.


Sign in / Sign up

Export Citation Format

Share Document