Spreading and instability of a viscous fluid sheet

1990 ◽  
Vol 211 ◽  
pp. 373-392 ◽  
Author(s):  
L. M. Hocking

Experiments by Huppert (1982) have demonstrated that a finite volume of fluid placed on an inclined plane will elongate into a thin sheet of fluid as it slides down the plane. If the fluid is initially placed uniformly across the plane, the sheet retains its two-dimensionality for some time, but when it has become sufficiently long and thin, the leading edge develops a spanwise instability. A similarity solution for this motion was derived by Huppert, without taking account of the edge regions where surface tension is important. When these regions are examined, it is found that the conditions at the edges can be satisfied, but only when the singularity associated with the moving contact line is removed. When the sheet is sufficiently elongated, the profile of the free surface shows an upward bulge near the leading edge. It is suggested that the observed instability of the shape of the leading edge is a result of the dynamics of the fluid in this bulge. The related problem of a ridge of fluid sliding down the plane is examined and found to be linearly unstable. The spanwise lengthscale of this instability is, however, dependent on the width of the channel occupied by the fluid, which is at variance with the observed nature of the instability. Preliminary numerical solutions for the nonlinear development of a small disturbance to the position of a straight leading edge show the incipient development of a finger of fluid with a width that does not depend on the channel size, in accordance with the observations.

1998 ◽  
Vol 359 ◽  
pp. 313-328 ◽  
Author(s):  
YULII D. SHIKHMURZAEV

An asymptotic analysis of two-dimensional free-surface cusps associated with flows at low Reynolds numbers is presented on the basis of a model which, in agreement with direct experimental observations, considers this phenomenon as a particular case of an interface formation–disappearance process. The model was derived from first principles and earlier applied to another similar process: the moving contact-line problem. As is shown, the capillary force acting on a cusp from the free surface, which in the classical approach can be balanced by viscous stresses only if the associated rate of dissipation of energy is infinite, in the present theory is always balanced by the force from the surface-tension-relaxation ‘tail’, which stretches from the cusp towards the interior of the fluid. The flow field near the cusp is shown to be regular, and the surface-tension gradient in the vicinity of the cusp, caused and maintained by the external flow, induces and is balanced by the shear stress. Existing approaches to the free-surface cusp description and some relevant experimental aspects of the problem are discussed.


2000 ◽  
Vol 413 ◽  
pp. 65-88 ◽  
Author(s):  
S. K. WILSON ◽  
R. HUNT ◽  
B. R. DUFFY

In this paper we reconsider the fundamental problem of the centrifugally driven spreading of a thin drop of Newtonian fluid on a uniform solid substrate rotating with constant angular speed when surface-tension and moving-contact-line effects are significant. We discuss analytical solutions to a number of problems in the case of no surface tension and in the asymptotic limit of weak surface tension, as well as numerical solutions in the case of weak but finite surface tension, and compare their predictions for the evolution of the radius of the drop (prior to the onset of instability) with the experimental results of Fraysse & Homsy (1994) and Spaid & Homsy (1997). In particular, we provide a detailed analytical description of the no-surface-tension and weak-surface-tension asymptotic solutions. We demonstrate that, while the asymptotic solutions do indeed capture many of the qualitative features of the experimental results, quantitative agreement for the evolution of the radius of the drop prior to the onset of instability is possible only when weak but finite surface-tension effects are included. Furthermore, we also show that both a fixed- and a specific variable-contact-angle condition (or ‘Tanner law’) are capable of reproducing the experimental results well.


1977 ◽  
Vol 81 (4) ◽  
pp. 735-756 ◽  
Author(s):  
J. Buckmaster

The unsteady creeping motion of a thin sheet of viscous liquid as it advances over a gently sloping dry bed is examined. Attention is focused on the motion of the leading edge under various influences and four problems are discussed. In the first problem the fluid is travelling down an open channel formed by two straight parallel retaining walls placed perpendicular to an inclined plane. When the channel axis is parallel to the fall line there is a progressive-wave solution with a straight leading edge, but inclination of the axis generates distortions and these are calculated. In the second problem a sheet with a straight leading edge travelling over an inclined plane penetrates a region where the bed is uneven, and the subsequent deformation of the leading edge is followed. The third problem considers the flow down an open channel of circular cross-section (a partially filled pipe) and the time-dependent shape of the leading edge is calculated. The fourth problem is that of flow down an inclined plane with a single curved retaining wall. These problems are all analysed by assuming that a length characteristic of the geometry is large compared with the fluid depth divided by the bed slope, and all the solutions display extreme sensitivity to the data.


Author(s):  
E. O. Tuck

AbstractIn the absence of surface tension, the problem of determining a travelling surface pressure distribution that displaces a portion of the free surface in a prescribed manner has been solved by several authors, and this “planing-surface” problem is reasonably well understood. The effect of inclusion of surface tension is to change, in a dramatic way, the singularity in the integral equation that describes the problem. It is now necessary in general to allow for isolated impulsive pressure, as well as a smooth distribution over the wetted length. Such pressure points generate jump discontinuities in free-surface slope. Numerical results are obtained here for a class of problems in which there is a single impulse located at the leading edge of the planing surface and detachment with continuous slope at the trailing edge. These results do not appear to approach the classical results in the limit as the surface tension approaches zero, a paradox that is resolved in Part II, which follows.


Author(s):  
P. F. Rhodes-Robinson

AbstractIn this note we examine the influence of surface tension on surface waves incident against a fixed vertical plane wall. The motion is time harmonic and is determined by making the initial assumption that the free-surface slope at the wall is prescribed. From the unique solution obtained for the velocity potential, the parameter involved in this specification can be determined, for small laboratory-scale waves at least, using some longstanding experimental results on meniscus behaviour at a moving contact line. The effect of surface tension is to produce a motion wherein reflexion from the wall is not complete and there is a local disturbance, in contrast to the classical standing-wave motion in the absence of surface tension.


2009 ◽  
Vol 627 ◽  
pp. 323-340 ◽  
Author(s):  
R. KIDAMBI

We consider the effect of a wetting condition at the moving contact line on the frequency and damping of surface waves on an inviscid liquid in a circular cylinder. The velocity potential φ and the free surface elevation η are sought as complex eigenfunction expansions. The φ eigenvalues are the classical ones whereas the η eigenvalues are unknown and have to be computed so as to satisfy the wetting condition on the contact line and the other free surface conditions – these turn out to be complex in general. A projection of the latter conditions on to an appropriate basis leads to an eigenvalue problem, for the complex frequency Ω, which has to be solved iteratively with the wetting condition. The variation of Ω with liquid depth h, Bond number Bo, capillary coefficient λ and static contact angle θc0 is explored for the (1, 0),(2, 0),(0, 1),(3, 0) and (4, 0) modes. The damping vanishes for λ = 0 (pinned-end edge condition) and λ = ∞ (free-end edge condition) with a maximum in the interior while the frequency decreases with increasing λ, approaching limiting values at the endpoints. A comparison with the analytic results of Miles (J. Fluid Mech., vol. 222, 1991, p. 197) for the no-meniscus case and the experimental results of Cocciaro, Faetti, & Festa (J. Fluid Mech., vol. 246, 1993, p. 43), where a meniscus is present, is good. The study provides a simple procedure for calculating the inviscid capillary damping associated with the moving contact line in a circular cylinder of finite depth with meniscus effects also being considered.


1997 ◽  
Vol 334 ◽  
pp. 211-249 ◽  
Author(s):  
YULII D. SHIKHMURZAEV

A general mathematical model which describes the motion of an interface between immiscible viscous fluids along a smooth homogeneous solid surface is examined in the case of small capillary and Reynolds numbers. The model stems from a conclusion that the Young equation, σ1 cos θ = σ2 − σ3, which expresses the balance of tangential projection of the forces acting on the three-phase contact line in terms of the surface tensions σi and the contact angle θ, together with the well-established experimental fact that the dynamic contact angle deviates from the static one, imply that the surface tensions of contacting interfaces in the immediate vicinity of the contact line deviate from their equilibrium values when the contact line is moving. The same conclusion also follows from the experimentally observed kinematics of the flow, which indicates that liquid particles belonging to interfaces traverse the three-phase interaction zone (i.e. the ‘contact line’) in a finite time and become elements of another interface – hence their surface properties have to relax to new equilibrium values giving rise to the surface tension gradients in the neighbourhood of the moving contact line. The kinematic picture of the flow also suggests that the contact-line motion is only a particular case of a more general phenomenon – the process of interface formation or disappearance – and the corresponding mathematical model should be derived from first principles for this general process and then applied to wetting as well as to other relevant flows. In the present paper, the simplest theory which uses this approach is formulated and applied to the moving contact-line problem. The model describes the true kinematics of the flow so that it allows for the ‘splitting’ of the free surface at the contact line, the appearance of the surface tension gradients near the contact line and their influence upon the contact angle and the flow field. An analytical expression for the dependence of the dynamic contact angle on the contact-line speed and parameters characterizing properties of contacting media is derived and examined. The role of a ‘thin’ microscopic residual film formed by adsorbed molecules of the receding fluid is considered. The flow field in the vicinity of the contact line is analysed. The results are compared with experimental data obtained for different fluid/liquid/solid systems.


2001 ◽  
Vol 12 (3) ◽  
pp. 233-252 ◽  
Author(s):  
S. K. WILSON ◽  
B. R. DUFFY ◽  
S. H. DAVIS

In this paper two similarity solutions describing a steady, slender, symmetric dry patch in an infinitely wide liquid film draining under gravity down an inclined plane are obtained. The first solution, which predicts that the dry patch has a parabolic shape and that the transverse profile of the free surface always has a monotonically increasing shape, is appropriate for weak surface-tension effects and far from the apex of the dry patch. The second solution, which predicts that the dry patch has a quartic shape and that the transverse profile of the free surface has a capillary ridge near the contact line and decays in an oscillatory manner far from it, is appropriate for strong surface-tension effects (in particular, when the plane is nearly vertical) and near (but not too close) to the apex of the dry patch. With the average volume flux per unit width (or equivalently with the uniform height of the layer far from the dry patch) prescribed, both solutions contain a free parameter. For each value of this parameter there is a unique solution in the first case and either no solution or a one-parameter family of solutions in the second case. The solutions capture some of the qualitative features observed in experiments.


1998 ◽  
Vol 372 ◽  
pp. 273-300 ◽  
Author(s):  
O. E. JENSEN ◽  
D. HALPERN

The leading edge of a localized, insoluble surfactant monolayer, advancing under the action of surface-tension gradients over the free surface of a thin, viscous, fluid layer, behaves locally like a rigid plate. Since lubrication theory fails to capture the integrable stress singularity at the monolayer tip, so overestimating the monolayer length, we investigate the quasi-steady two-dimensional Stokes flow near the tip, assuming that surface tension or gravity keeps the free surface locally at. Wiener–Hopf and matched-eigenfunction methods are used to compute the ‘stick-slip’ flow when the singularity is present; a boundary-element method is used to explore the nonlinear regularizing effects of weak ‘contaminant’ surfactant or surface diffusion. In the limit in which gravity strongly suppresses film deformations, a spreading monolayer drives an unsteady return flow (governed by a nonlinear diffusion equation) beneath most of the monolayer, and a series of weak vortices in the fluid ahead of the tip. As contaminant or surface diffusion increase in strength, they smooth the tip singularity over short lengthscales, eliminate the local stress maximum and ultimately destroy the vortices. The theory is readily extended to cases in which the film deforms freely over long lengthscales. Limitations of conventional thin-film approximations are discussed.


Sign in / Sign up

Export Citation Format

Share Document