A weakly nonlinear model of long internal waves in closed basins

2002 ◽  
Vol 467 ◽  
pp. 269-287 ◽  
Author(s):  
D. A. HORN ◽  
J. IMBERGER ◽  
G. N. IVEY ◽  
L. G. REDEKOPP

A simple model is developed, based on an approximation of the Boussinesq equation, that considers the weakly nonlinear evolution of an initial interface disturbance in a closed basin. The solution consists of the sum of the solutions of two independent Korteweg–de Vries (KdV) equations (one along each characteristic) and a second-order wave–wave interaction term. It is demonstrated that the solutions of the two independent KdV equations over the basin length [0, L] can be obtained by the integration of a single KdV equation over the extended reflected domain [0, 2L]. The main effect of the second-order correction is to introduce a phase shift to the sum of the KdV solutions where they overlap. The results of model simulations are shown to compare qualitatively well with laboratory experiments. It is shown that, provided the damping timescale is slower than the steepening timescale, any initial displacement of the interface in a closed basin will generate three types of internal waves: a packet of solitary waves, a dispersive long wave and a train of dispersive oscillatory waves.

2020 ◽  
Vol 15 ◽  

Discovered experimentally by Russell and described theoretically by Korteweg and de Vries, KdV equation has been a nonlinear evolution equation describing the propagation of weakly dispersive and weakly nonlinear waves. This equation received a lot of attention from mathematical and physical communities as an integrable equation. The objectives of this paper are: first, providing a rigorous mathematical derivation of an extended KdV equations, one on the velocity, other on the surface elevation, next, solving explicitly the one on the velocity. In order to derive rigorously these equations, we will refer to the definition of consistency, and to find an explicit solution for this equation, we will use the sine-cosine method. As a result of this work, a rigorous justification of the extended Kdv equation of fifth order will be done, and an explicit solution of this equation will be derived.


2015 ◽  
Vol 70 (7) ◽  
pp. 559-566 ◽  
Author(s):  
Gao-Qing Meng ◽  
Yi-Tian Gao ◽  
Da-Wei Zuo ◽  
Yu-Jia Shen ◽  
Yu-Hao Sun ◽  
...  

AbstractKorteweg–de Vries (KdV)-type equations are used as approximate models governing weakly nonlinear long waves in fluids, where the first-order nonlinear and dispersive terms are retained and in balance. The retained second-order terms can result in the extended fifth-order KdV equation. Through the Darboux transformation (DT), multi-soliton solutions for the extended fifth-order KdV equation with coefficient constraints are constructed. Soliton propagation properties and interactions are studied: except for the velocity, the amplitude and width of the soliton are not influenced by the coefficient of the original equation; the amplitude, velocity, and wave shape of each soltion remain unchanged after the interaction. By virtue of the generalised DT and Taylor expansion of the solutions for the corresponding Lax pair, the first- and second-order rational solutions of the equation are obtained.


2012 ◽  
Vol 12 (5) ◽  
pp. 1461-1481
Author(s):  
Robyn Canning Gregory ◽  
David P. Nicholls

Abstract Internal waves arise in a wide array of oceanographic problems of both theoretical and engineering interest. In this contribution we present a new model, valid in the weakly nonlinear regime, for the propagation of disturbances along the interface between two ideal fluid layers of infinite extent and different densities. Additionally, we present a novel high-order/spectral algorithm for its accurate and stable simulation. Numerical validation results and simulations of wave-packet evolution are provided.


1998 ◽  
Vol 354 ◽  
pp. 209-237 ◽  
Author(s):  
VYACHESLAV V. VORONOVICH ◽  
DMITRY E. PELINOVSKY ◽  
VICTOR I. SHRIRA

The work is concerned with long nonlinear internal waves interacting with a shear flow localized near the sea surface. The study is focused on the most intense resonant interaction occurring when the phase velocity of internal waves matches the flow velocity at the surface. The perturbations of the shear flow are considered as ‘vorticity waves’, which enables us to treat the wave–flow resonance as the resonant wave–wave interaction between an internal gravity mode and the vorticity mode. Within the weakly nonlinear long-wave approximation a system of evolution equations governing the nonlinear dynamics of the waves in resonance is derived and an asymptotic solution to the basic equations is constructed. At resonance the nonlinearity of the internal wave dynamics is due to the interaction with the vorticity mode, while the wave's own nonlinearity proves to be negligible. The equations derived are found to possess solitary wave solutions of different polarities propagating slightly faster or slower than the surface velocity of the shear flow. The amplitudes of the ‘fast’ solitary waves are limited from above; the crest of the limiting wave forms a sharp corner. The solitary waves of amplitude smaller than a certain threshold are shown to be stable; ‘subcritical’ localized pulses tend to such solutions. The localized pulses of amplitude exceeding this threshold form infinite slopes in finite time, which indicates wave breaking.


Author(s):  
Igor V. Shugan ◽  
Hwung-Hweng Hwung ◽  
Ray-Yeng Yang

An analytical weakly nonlinear model of Benjamin–Feir instability of a Stokes wave on nonuniform unidirectional current is presented. The model describes evolution of a Stokes wave and its two main sidebands propagating on a slowly-varying steady current. In contrast to the models based on versions of the cubic Schrodinger equation the current variations could be strong, which allows us to examine the blockage and consider substantial variations of the wave numbers and frequencies of interacting waves. Interaction with countercurrent accelerates the growth of sideband modes on a short spatial scale. An increase in initial wave steepness intensifies the wave energy exchange accompanied by wave breaking dissipation, results in asymmetry of sideband modes and a frequency downshift with an energy transfer jump to the lower sideband mode, and depresses the higher sideband and carrier wave. Nonlinear waves may even overpass the blocking barrier produced by strong adverse current. The frequency downshift of the energy peak is permanent and the system does not revert to its initial state. We find reasonable correspondence between the results of model simulations and available experimental results for wave interaction with blocking opposing current.


1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


Author(s):  
Simon A. Neild ◽  
Andrea Cammarano ◽  
David J. Wagg

In this paper we discuss a theoretical technique for decomposing multi-degree-of-freedom weakly nonlinear systems into a simpler form — an approach which has parallels with the well know method for linear modal analysis. The key outcome is that the system resonances, both linear and nonlinear are revealed by the transformation process. For each resonance, parameters can be obtained which characterise the backbone curves, and higher harmonic components of the response. The underlying mathematical technique is based on a near identity normal form transformation. This is an established technique for analysing weakly nonlinear vibrating systems, but in this approach we use a variation of the method for systems of equations written in second-order form. This is a much more natural approach for structural dynamics where the governing equations of motion are written in this form as standard practice. In fact the first step in the method is to carry out a linear modal transformation using linear modes as would typically done for a linear system. The near identity transform is then applied as a second step in the process and one which identifies the nonlinear resonances in the system being considered. For an example system with cubic nonlinearities, we show how the resulting transformed equations can be used to obtain a time independent representation of the system response. We will discuss how the analysis can be carried out with applied forcing, and how the approximations about response frequencies, made during the near-identity transformation, affect the accuracy of the technique. In fact we show that the second-order normal form approach can actually improve the predictions of sub- and super-harmonic responses. Finally we comment on how this theoretical technique could be used as part of a modal testing approach in future work.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


Sign in / Sign up

Export Citation Format

Share Document