Non-Newtonian fluid displacements in horizontal narrow eccentric annuli: effects of slow motion of the inner cylinder

2010 ◽  
Vol 653 ◽  
pp. 137-173 ◽  
Author(s):  
M. CARRASCO-TEJA ◽  
I. A. FRIGAARD

We study non-Newtonian fluid displacements in horizontal narrow eccentric annuli in the situation where the inner cylinder is moving. This represents a practically important extension of the model analysed by Carrasco-Teja et al. (J. Fluid Mech., vol. 605, 2008, pp. 293–327). When motion of the inner cylinder is included, the Hele-Shaw model closure becomes significantly more complex and extremely costly to compute, except for Newtonian fluids. In the first part of the paper we address the model derivation and closure relations. The second part of the paper considers the limit of large buoyancy number, in which the interface elongates along the annulus. We derive a lubrication-style model for this situation, showing that the leading-order interface is symmetric. Rotation of the inner cylinder only affects the length of the leading-order interface, and this occurs only for non-Newtonian fluids via shear-thinning effects. At first order, casing rotation manifests in an asymmetrical ‘shift’ of the interface in the direction of the rotation. We also derive conditions on the eccentricity, fluid rheology and inner cylinder velocity, under which we are able to find steady travelling wave displacement solutions.

2010 ◽  
Vol 649 ◽  
pp. 371-398 ◽  
Author(s):  
S. MALEKMOHAMMADI ◽  
M. CARRASCO-TEJA ◽  
S. STOREY ◽  
I. A. FRIGAARD ◽  
D. M. MARTINEZ

We present an experimental study of slow laminar miscible displacement flows in vertical narrow eccentric annuli. We demonstrate that for suitable choices of viscosity ratio, density ratio and flow rate, we are able to find steady travelling wave displacements along the length of the annulus, even when strongly eccentric. Small eccentricity, increased viscosity ratio, increased density ratio and slower flow rates all appear to favour a steady displacement for Newtonian fluids. Qualitatively similar effects are found for non-Newtonian fluids, although the role of flow rate is less clear. These results are largely in line with predictions of a Hele-Shaw style of displacement model (Bittleston et al., J. Engng Math., vol. 43, 2002, pp. 229–253). The experiments also reveal interesting phenomena caused largely by secondary flows and dispersion. In the steady displacements, eccentricity drives a strong azimuthal counter-current flow above/below the advancing interface. This advects displacing fluid to the wide side of the annulus, where it focuses in the form of an advancing spike. On the narrow side we have also observed a spike, but only in Newtonian fluid displacements. For unsteady displacements, the azimuthal currents diminish as the interface elongates. With a strong enough yield stress and with a large enough eccentricity, unyielded fluid remains behind on the narrow side of the annulus.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
P Kaushik ◽  
Pranab Kumar Mondal ◽  
Sukumar Pati ◽  
Suman Chakraborty

This study investigates the unsteady heat transfer and entropy generation characteristics of a non-Newtonian fluid, squeezed and extruded between two parallel plates. In an effort to capture the underlying thermo-hydrodynamics, the power-law model is used here to describe the constitutive behavior of the non-Newtonian fluid. The results obtained from the present analysis reveal the intricate interplay between the fluid rheology and the squeezing dynamics, toward altering the Nusselt number and Bejan number characteristics. Findings from this study may be utilized to design optimal process parameters for enhanced thermodynamic performance of engineering systems handling complex fluids undergoing simultaneous extrusion and squeezing.


Taylor’s analyses of the dispersion of Newtonian fluids in laminar flow in a circular tube are extended to the flow of the Bingham plastic and Ellis model fluid. The previous results for the Newtonian fluid and power-low fluid can be deduced from the results of this work. It is indicated that Aris’s modification of Taylor’s analyses can be naturally applied to the non-Newtonian fluid. Results obtained for laminar flow between two parallel plane walls are given in the appendix.


Author(s):  
Faraj Ben Rajeb ◽  
Mohamed Odan ◽  
Amer Aborig ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
...  

Abstract Two-phase flow of gas/Newtonian and gas/non-Newtonian fluid through pipes occurs frequently in the chemical industry as well as in petroleum refining. Extensive experimental and theoretical research has been carried out on these systems in order to better understand their behaviour under different conditions regarding pressure, temperature and mixture concentrations. In this study, experimental apparatuses are used to investigate two-phase flow of gas/liquid systems through pipes. Air is used as the gas in the experiments, while water is used as the Newtonian fluid and Xanthan gum as the non-Newtonian fluid. The objectives of the study are to compare pressure drops when the same gas flows simultaneously with Newtonian and non-Newtonian fluids through tubes. The comparison here is between experimental pressure drops and estimated pressure drops, based on available empirical correlations for gas/Newtonian and gas/non-Newtonian flow. The trend exhibited by the pressure drops in both systems helps us to better understand the relationship between mixture flow pressure drops in Newtonian and non-Newtonian fluids and thereby develop a new experimental model. The tube diameter for the flow loop is 3/4 inch and the flow type ranges from transient to turbulent.


Sign in / Sign up

Export Citation Format

Share Document