The elongated shape of a dielectric drop deformed by a strong electric field

2010 ◽  
Vol 664 ◽  
pp. 286-296 ◽  
Author(s):  
DOV RHODES ◽  
EHUD YARIV

A dielectric drop is suspended within a dielectric liquid and is exposed to a uniform electric field. Due to polarization forces, the drop deforms from its initial spherical shape, becoming prolate in the field direction. At strong electric fields, the drop elongates significantly, becoming long and slender. For moderate ratios of the permittivities of the drop and surrounding liquid, the drop ends remain rounded. The slender limit was originally analysed by Sherwood (J. Phys. A, vol. 24, 1991, p. 4047) using a singularity representation of the electric field. Here, we revisit it using matched asymptotic expansions. The electric field within the drop is continued into a comparable solution in the ‘inner’ region, at the drop cross-sectional scale, which is itself matched into the singularity representation in the ‘outer’ region, at the drop longitudinal scale. The expansion parameter of the problem is the elongated drop slenderness. In contrast to familiar slender-body analysis, this parameter is not provided by the problem formulation, and must be found throughout the course of the solution. The drop aspect-ratio scaling, with the 6/7-power of the electric field, is identical to that found by Sherwood (J. Phys. A, vol. 24, 1991, p. 4047). The predicted drop shape is compared with the boundary-integral solutions of Sherwood (J. Fluid Mech., vol. 188, 1988, p. 133). While the agreement is better than that found by Sherwood (J. Phys. A, vol. 24, 1991, p. 4047), the weak logarithmic decay of the error terms still hinders an accurate calculation. We obtain the leading-order correction to the drop shape, improving the asymptotic approximation.

Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Past research in the area of pool boiling within the presence of electric fields has generally focused on the case of uniform field intensity. Any numerical or analytical studies of the effect of non-uniform fields on the motion of bubbles within a dielectric liquid medium have assumed that the bubbles will retain their spherical shape rather than deform. These studies also ignore changes to the electrical field caused by the presence of the bubbles. However, these assumptions are not necessarily accurate as, even in the case of a nominally uniform electric field distribution, bubbles can exhibit considerable physical deformation and the field can become noticeably affected in the vicinity of the bubble. This study explores the effect that a non-uniform electric field can have on vapor bubbles of a dielectric fluid by modeling the physical deformation of the bubble and the alteration of the surrounding field. Numerical results show that the imbalance of electrical stresses at the bubble surface exerts a net dielectrophoretic force on the bubble, propelling the bubble to the vicinity of weakest electric field, thereby enhancing the separation of liquid and vapor phases during pool boiling. However, the proximity of the bubble to one of the electrodes can considerably alter the bubble trajectory due to an attractive force that arises from local distortions of the potential and electric fields. This phenomenon cannot be predicted if bubble deformation and field distortion effects are neglected.


1999 ◽  
Vol 384 ◽  
pp. 59-91 ◽  
Author(s):  
S. M. LEE ◽  
I. S. KANG

A three-dimensional analysis is performed to investigate the effects of an electric field on the steady deformation and small-amplitude oscillation of a bubble in dielectric liquid. To deal with a general class of electric fields, an electric field near the bubble is approximately represented by the sum of a uniform field and a linear field. Analytical results have been obtained for steady deformation and modification of oscillation frequency by using the domain perturbation method with the angular momentum operator approach.It has been found that, to the first order, the steady shape of a bubble in an arbitrary electric field can be represented by a linear combination of a finite number of spherical harmonics Yml, where 0[les ]l[les ]4 and [mid ]m[mid ][les ]l. For the oscillation about the deformed steady shape, the overall frequency modification from the value of free oscillation about a spherical shape is obtained by considering two contributions separately: (i) that due to the deformed steady shape (indirect effect), and (ii) that due to the direct effect of an electric field. Both the direct and indirect effects of an electric field split the (2l+1)-fold degenerate frequency of Yml modes, in the case of free oscillation about a spherical shape, into different frequencies that depend on m. However, when the average is taken over the (2l+1) values of m, the frequency splitting due to the indirect effect via the deformed steady shape preserves the average value, while the splitting due to the direct effect of an electric field does not.The oscillation characteristics of a bubble in a uniform electric field under the negligible compressibility assumption are compared with those of a conducting drop in a uniform electric field. For axisymmetric oscillation modes, deforming the steady shape into a prolate spheroid has the same effect of decreasing the oscillation frequency in both the drop and the bubble. However, the electric field has different effects on the oscillation about a spherical shape. The oscillation frequency increases with the increase of electric field in the case of a bubble, while it decreases in the case of a drop. This fundamental difference comes from the fact that the electric field outside the bubble exerts a suppressive surface force while the electric field outside the conducting drop exerts a pulling force on the surface.


Pressure has been used as the principal parameter in calculations of the fundamental vibrational frequencies of spherical drops of radius R , density ρ, and surface tension T carrying a charge Q or uncharged spheroidal drops of axial ratio a / b situated in a uniform electric field of strength E . Freely vibrating charged drops have a frequency f = f 0 ( 1 - Q 2 /16π R 3 T ) ½ , as shown previously by Rayleigh (1882) using energy considerations; f 0 is the vibrational frequency of non-electrified drops (Rayleigh 1879). The fundamental frequency of an uncharged drop in an electric field will decrease with increasing field strength and deformation a / b and will equal zero when E ( R )/ T ) ½ = 1.625 and a / b = 1.86; these critical values correspond to the disintegration conditions derived by Taylor (1964). An interferometric technique involving a laser confirmed the accuracy of the calculations concerned with charged drops. The vibration of water drops of radius around 2 mm was studied over a wide range of temperatures as they fell through electric fields either by suspending them in a vertical wind tunnel or allowing them to fall between a pair of vertical electrodes. Photographic analysis of the vibrations revealed good agreement between theory and experiment over the entire range of conditions studied even though the larger drops were not accurately spheroidal and the amplitude of the vibrations was large.


2020 ◽  
pp. 64-72
Author(s):  
Mustafa Erol ◽  
İldahan Özdeyiş Çolak

This work offers an unproblematic teaching tool for the instruction of challeng-ing concept of electric potential difference in a non-uniform electric field. Specifically, mathematical modelling process is employed and managed to comprehend and teach exceedingly difficult concepts of uniform and non-uniform electric fields, electrical potential difference, scalar products of vectors and also concept of path integral. In order to accomplish those tasks, initially a basic conducting panel/sheet, that is simply a wet cardboard, is designed as a part of the apparatus, together with a dc power supply, a multi meter and connecting cables. The established method is interesting in the sense that the 3D wet cardboard is novel, very practical and minimal costing, hence the approach offers physics educators fresh teaching routes and opportunities to clarify the puzzling concept of electrical potential difference and further.


2018 ◽  
Vol 844 ◽  
pp. 567-596 ◽  
Author(s):  
Yunqiao Liu ◽  
Dongdong He ◽  
Xiaobo Gong ◽  
Huaxiong Huang

In this paper, we investigate the dynamics of an encapsulated bubble in steady and oscillatory electric fields theoretically, based on a leaky dielectric model. On the bubble surface, an applied electric field generates a Maxwell stress, in addition to hydrodynamic traction and membrane mechanical stress. Our model also includes the effect of interfacial charge due to the jump of the current and the stretching of the interface. We focus on the axisymmetric deformation of the encapsulated bubble induced by the electric field and carry out our analysis using Legendre polynomials. In our first example, the encapsulating membrane is modelled as a nearly incompressible interface with bending rigidity. Under a steady uniform electric field, the encapsulated bubble resumes an elongated equilibrium shape, dominated by the second- and fourth-order shape modes. The deformed shape agrees well with experimental observations reported in the literature. Our model reveals that the interfacial charge distribution is determined by the magnitude of the shape modes, as well as the permittivity and conductivity of the external and internal fluids. The effects of the electric field on the natural frequency of the oscillating bubble are also shown. For our second example, we considered a bubble encapsulated with a hyperelastic membrane with bending rigidity, subject to an oscillatory electric field. We show that the bubble can modulate its oscillating frequency and reach a stable shape oscillation at an appreciable amplitude.


1970 ◽  
Vol 4 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Barbara Abraham-Shrauner

Suppression of runaway of electrons in a weak, uniform electric field in a fully ionized Lorentz plasma by crossed magnetic and electric fields is analysed. A uniform, constant magnetic field parallel to a constant or harmonically time varying electric field does not alter runaway from that in the absence of the magnetic field. For crossed, constant fields the passage to runaway or to free motion as described by constant drift motion and spiral motion about the magnetic field is lengthened in time for strong magnetic fields. The new ‘runaway’ time scale is roughly the ratio of the cyclotron frequency to the collision frequency squared for cyclotron frequencies much greater than the collision frequency. All ‘runaway’ time scales may be given approximately by t2E Teff where tE is the characteristic time of the electric field and Teff is the ffective collision time as estimated from the appropriate component of the electrical conductivity.


Author(s):  
S. P. GAVRILOV ◽  
D. M. GITMAN

We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2984
Author(s):  
Muhammad Salman Abbasi ◽  
Haroon Farooq ◽  
Hassan Ali ◽  
Ali Hussain Kazim ◽  
Rabia Nazir ◽  
...  

The electrohydrodynamic deformation of an emulsion droplet with a clean and particle-covered interface was explored. Here, the electrohydrodynamic deformation was numerically and experimentally demonstrated under the stimuli of moderate and strong electric fields. The numerical method involves the coupling of the Navier–Stokes equation with the level set equation of interface tracking and the governing equations of so-called leaky dielectric theory. The simulation model developed for a clean interface droplet was then extended to a capsule model for densely particle-covered droplets. The experiments were conducted using various combinations of immiscible oils and particle suspensions while the electric field strength ~105 V/m was generated using a high voltage supply. The experimental images obtained by the camera were post-processed using an in-house image processing code developed on the plat-form of MATLAB software. The results show that particle-free droplets can undergo prolate (deformation in the applied electric field direction) or oblate deformation (deformation that is perpendicular to the direction of the applied electric field) of the droplet interface, whereas the low-conductivity particles can be manipulated at the emulsion interface to form a ‘belt’, ‘helmet’ or ‘cup’ morphologies. A densely particle-covered droplet may not restore to its initial spherical shape due to ‘particle jamming’ at the interface, resulting in the formation of unique droplet shapes. Densely particle-covered droplets behave like droplets covered with a thin particle sheet, a capsule. The deformation of such droplets is explored using a simulation model under a range of electric capillary numbers (i.e., the ratio of the electric stresses to the capillary stresses acting at the droplet interface). The results obtained are then compared with the theory and experimental findings. It was shown that the proposed simulation model can serve as a tool to predict the deformation/distortion of both the particle-free and the densely particle-covered droplets within the small deformation limit. We believe that this study could provide new findings for the fabrication of complex-shaped species and colloidosomes.


Sign in / Sign up

Export Citation Format

Share Document