scholarly journals On the microhydrodynamics of superspreading

2011 ◽  
Vol 670 ◽  
pp. 1-4 ◽  
Author(s):  
C. MALDARELLI

Droplets of an aqueous phase placed on a very hydrophobic, waxy surface bead-up rather than spread, forming a sessile drop with a relatively large contact angle at the edge of the drop. Surfactant molecules, when dissolved in the aqueous phase, can facilitate the wetting of an aqueous drop on a hydrophobic surface. One class of surfactants, superwetters, can cause aqueous droplets to move very rapidly over a hydrophobic surface, thereby completely wetting the surface (superspreading). A recent numerical study of the hydrodynamics of superspreading by Karapetsas, Craster & Matar (J. Fluid Mech., this issue, vol. 670, 2011, pp. 5–37) provides a clear explanation of how these surfactants cause such a dramatic change in wetting behaviour. The study shows that large spreading rates occur when the surfactant can transfer directly from the air/aqueous to the aqueous/hydrophobic solid interface at the contact line. This transfer reduces the concentration of surfactant on the fluid interface, which would otherwise be elevated due to the advection accompanying the drop spreading. The reduced concentration creates a Marangoni force along the fluid surface in the direction of spreading, and a concave rim in the vicinity of the contact line with a large dynamic contact angle. Both of these effects act to increase the spreading rate. The molecular structure of the superwetters allows them to assemble on a hydrophobic surface, enabling the direct transfer from the fluid to the solid surface at the contact line.

2018 ◽  
Vol 841 ◽  
pp. 767-783 ◽  
Author(s):  
Yi Xia ◽  
Paul H. Steen

Contact-line mobility characterizes how fast a liquid can wet or unwet a solid support by relating the contact angle $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ to the contact-line speed $U_{CL}$. The contact angle changes dynamically with contact-line speeds during rapid movement of liquid across a solid. Speeds beyond the region of stick–slip are the focus of this experimental paper. For these speeds, liquid inertia and surface tension compete while damping is weak. The mobility parameter $M$ is defined empirically as the proportionality, when it exists, between $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ and $U_{CL}$, $M\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}=U_{CL}$. We discover that $M$ exists and measure it. The experimental approach is to drive the contact line of a sessile drop by a plane-normal oscillation of the drop’s support. Contact angles, displacements and speeds of the contact line are measured. To unmask the mobility away from stick–slip, the diagram of $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ against $U_{CL}$, the traditional diagram, is remapped to a new diagram by rescaling with displacement. This new diagram reveals a regime where $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ is proportional to $U_{CL}$ and the slope yields the mobility $M$. The experimental approach reported introduces the cyclically dynamic contact angle goniometer. The concept and method of the goniometer are illustrated with data mappings for water on a low-hysteresis non-wetting substrate.


2020 ◽  
Vol 229 (10) ◽  
pp. 1945-1977 ◽  
Author(s):  
Yulii D. Shikhmurzaev

Abstract After a brief overview of the ‘moving contact-line problem’ as it emerged and evolved as a research topic, a ‘litmus test’ allowing one to assess adequacy of the mathematical models proposed as solutions to the problem is described. Its essence is in comparing the contact angle, an element inherent in every model, with what follows from a qualitative analysis of some simple flows. It is shown that, contrary to a widely held view, the dynamic contact angle is not a function of the contact-line speed as for different spontaneous spreading flows one has different paths in the contact angle-versus-speed plane. In particular, the dynamic contact angle can decrease as the contact-line speed increases. This completely undermines the search for the ‘right’ velocity-dependence of the dynamic contact angle, actual or apparent, as a direction of research. With a reference to an earlier publication, it is shown that, to date, the only mathematical model passing the ‘litmus test’ is the model of dynamic wetting as an interface formation process. The model, which was originated back in 1993, inscribes dynamic wetting into the general physical context as a particular case in a wide class of flows, which also includes coalescence, capillary breakup, free-surface cusping and some other flows, all sharing the same underlying physics. New challenges in the field of dynamic wetting are discussed.


2019 ◽  
Vol 894 ◽  
pp. 104-111
Author(s):  
Thanh Long Le ◽  
Jyh Chen Chen ◽  
Huy Bich Nguyen

In this study, the numerical computation is used to investigate the transient movement of a water droplet in a microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. 40mW heat source is placed at the distance of 1 mm from the initial position of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


Author(s):  
Alexandru Herescu ◽  
Jeffrey S. Allen

Film deposition experiments are performed in circular glass capillaries of 500 μm diameter. Two surface wettabilities are considered, contact angle of 30° for water on glass and of 105° when a hydrophobic coating is applied. It was observed that the liquid film deposited as the meniscus translates with a velocity U presents a ridge that also moves in the direction of the flow. The ridge is bounded by a contact line moving at a velocity UCL as well as a front of velocity UF, and it translates over the deposited stagnant film. The behavior of the ridge presents striking dissimilarities when the wettability is changed. Both UCL and UF are approximately twice as large for the non-wetting case at the same capillary number Ca. The Taylor bubbles forming due to the growth of the ridge are also differentiated by wettability, being much shorter in the non-wetting case. The dynamics of the contact line is studied experimentally and a criterion is proposed to explain the occurrence of a shock at the advancing front of the ridge. The hydraulic jump cannot be explained by the Froude condition of shock formation in shallow waters, or by an inertial dewetting of the deposited film. For a dynamic contact angle of θd = 6° and according to the proposed criterion, a hydraulic jump forms at the front of the ridge when a critical velocity is reached.


2014 ◽  
Vol 80 (809) ◽  
pp. FE0004-FE0004 ◽  
Author(s):  
Takahiro ITO ◽  
Shoji HIRUTA ◽  
Ryota SHIMURA ◽  
Kenji KATOH ◽  
Tatsuro WAKIMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document